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ABSTRACT

We present GSO-Simulcast, a new architecture designed for large-

scale multi-party video-conferencing systems. GSO-Simulcast is

currently deployed at full-scale in Alibaba’s Dingtalk video con-

ferencing that serves more than 500 million users. It marks a fun-

damental shift from today’s Simulcast, where a media server lo-

cally decides how to switch and forward video streams based on

a fragmented network view. Instead, GSO-Simulcast globally or-

chestrates the publishing, subscribing, as well as the resolution and

bitrate of video streams for each participant using a centralized

controller that is aware of all network constraints in a meeting. The

controller automatically modifies stream configurations to meet the

participants’ real-time network changes and updates. In doing so,

GSO-Simulcast achieves multiple goals: (1) reducing video and net-

work mismatch, (2) less path congestion, and (3) automated stream

policy management. With the deployment of GSO-Simulcast, we

observed more than a 35% reduction in the average video stall, 50%

reduction in the average voice stall, and 6% improvement in the

average video framerate. We describe the principle, design, deploy-

ment, and lessons learned.
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1 INTRODUCTION

Real-time voice/video communication has fundamentally reshaped

our society. With the Covid variants continuing to surge, video-

conferencing emerges as the beating heart of remote collaboration,

learning, and personal interaction for billions of people around the

globe. These ever-growing needs of virtual connectivity continue to

drive the flourish of a vast number of video-conferencing services

such as Zoom [1], Microsoft Teams [2], Google Meet [3], Amazon

Chime [4], and Alibaba Dingtalk [5].

As one of the world’s major teleconferencing and collaboration

apps, Dingtalk serves more than 500 million users. It is mission-

critical for us to ensure satisfactory user experience in video con-

ferencing. In this paper, we present GSO-Simulcast, a new archi-

tecture designed for large-scale multi-party video conferencing.

The introduction of GSO-Simulcast is by reason of the following

trends we face:

• Better video quality. In order to create a more interactive and

engaging conversation, there is a growing need for users to see

higher video qualities at low latency. Thus, we want our confer-

encing system to support higher average bitrate and framerate

even without the upgrade of underlay infrastructure.

• Bigger conference. We notice that the average meeting size is

increasing with more and more events going virtual. Today, it is

not uncommon for our users to host a meeting with hundreds of

participants. Therefore, ensuring a good user experience in large

conferences becomes a focal point.

• Improved slow-link performance. We note that the meeting fluency

is heavily impacted by the participant who has the worst network

conditions (slow links). Moreover, as meeting size grows, the

likelihood of someone in the room having a slow link increases,

so it is important for us to improve the media transport under

slow links.

• More accessibility. We want to make our service even more ac-

cessible so that users can access our technology from anywhere

with any device. To do so, we need a cost-effective solution. On

top of that, such a solution must support a wide range of desktop

and mobile devices.

Serving high-quality real-time media streams in a large-scale multi-

party video conference is particularly challenging due to (i) the

heterogeneous network conditions of different participants, and

(ii) the complicated subscribing relations between each pair of

participants 1. For example, when a publisher sends a high-quality

video stream to a subscriber with insufficient bandwidth, high

packet losses will occur, causing video/voice stalls and delays.

1The number of pairs increases quadratically with the number of participants
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At a fundamental level, these challenges translate to the essen-

tial need for a conferencing architecture that swiftly adapts video

stream qualities to each participant’s network constraints. With

years of evolution, the industry has converged on three main ap-

proaches to tackle this problem: transcoding [6ś8], SVC [9, 10],

and Simulcast [11ś13]. All these approaches have pros and cons.

Transcoding can near-optimally fit video streams into downstream

network paths, but in doing so, it places a significant burden on the

server, which needs to generate additional alternate streams on its

own in real-time. As a result, transcoding is not cost-effective for

us. SVC allows a single video stream to adapt to multiple bitrates.

However, the problem with SVC is codec compatibility since it

requires every participant in a video conference to support scal-

able encoding/decoding. We find that SVC is difficult to deploy in

our scenarios because we need to cover a broad range of mobile

devices, many of which use hardware H264 codecs that do not

support scalability. In Simulcast [12, 14], a client encodes a video

source multiple times in different bitrates and sends these video

streams in parallel to an selective-forwarding unit (SFU), who then

decides how to switch and forward these streams. Compared to

transcoding and SVC, Simulcast is more scalable and cost-effective

since it requires neither encoding/decoding media on a server, nor

specialized functions in video codecs.

Unfortunately, state-of-the-art Simulcasts adapt video streams

with stream policies (e.g., Twilio [15], Amazon Chime [16], and

Chromium [17] ) that have a number of limitations: (1) the uplink

policy and downlink policy are isolated, where a publisher decides

what to push based on his/her local view of the upstream network

and the video resolution captured [15ś17]. There is no coordination

between uplink and downlink, and among different participants.

(2) The stream policies are template-based and are tuned based

on empirical observations, and hence can only cover cases of a

small number of participants (typically smaller than 6) [16]. (3)

They support only few coarse-grained bitrate levels (typically 2-

3 levels 2) [16] and the target bitrate ratio between two adjacent

streams could be as large as 5 [17]. As a result, they suffer from

several drawbacks, including but not limited to (1) mismatch be-

tween videos and networks, (2) susceptibility to uplink congestion,

(3) poor manageability when conference size becomes large.

The fundamental flaw of today’s Simulcast lies in the fact there is

a lack of coordination among senders, receivers, and media servers.

As a result, video adaptation in Simulcast is limited to a fragmented

view of the conference. Instead, we should consider every path from

the upstream to the downstream, including the network constraints

in the uplinks and downlinks, and the subscriptions between each

pair of participants. Therefore, we decided to buildGSO-Simulcast,

which marked a fundamental shift in the design philosophy. GSO-

Simulcast globally orchestrates the publishing, subscribing, as well

as the resolution and bitrate of video streams for each participant

using a centralized controller that is aware of the full network,

subscription, and codec capability constraints in a meeting. In doing

so, GSO-Simulcast achieves the following unique characteristics:

2For example, Amazon Chime employs a stream policy that sets the 360P stream to
600Kbps (if uplink bandwidth >300Kbps) or not-used (if uplink bandwidth < 300Kbps)
when the number of participants is smaller than 6 [16].

• Less path congestion. GSO-Simulcast’s controller has a global

view of the conference, so it can intelligently decide the most

suitable video streams for each participant to publish or subscribe

to, avoiding network congestion. For example, if no receiver

wants to subscribe to a stream at a specific bitrate, the controller

will inform the publisher to stop pushing that stream, which

not only saves bandwidth and CPU costs, but also reduces the

likelihood of video/voice stalls.

• Better manageability with automated stream policy. To-

day’s Simulcast is driven by template-based policies that consist

of adaptation rules for each network condition and participant

number [12]. Not only is tuning such rules time-consuming, but

when the conference size becomes larger, or the network condi-

tions become more complex, enumerating all possible situations

becomes unmanageable. GSO-Simulcast solves the manageabil-

ity problem as a global optimization, which automatically adapts

to different networks and participants’ situations. Devices’ codec

interoperabilities are also considered explicitly in the optimiza-

tion.

• Reducing video and network mismatch. GSO-Simulcast

supports video streams at a much finer bitrate granularity, thanks

to its ability to precisely optimize and orchestrate streams at a

global level. In our deployment, we support up to 15 bitrate levels.

Such a fine bitrate granularity enables us to more efficiently

fit video streams into network bandwidths, leading to better

video quality. Moreover, fine-grained bitrate levels also permit

smoother quality transitions as the network degrades.

Challenges: In our efforts to deploy GSO-Simulcast, we need to

address a number of challenges:

• Control in real-time. The stream orchestration problem is combi-

natorial in nature. Specifically, the centralized controller needs

to determine the combination of streams for each participant to

publish and subscribe to. The result must simultaneously satisfy

the network bandwidth constraints, the codec capability con-

straints, and the subscription constraints. The complexity of a

brute-force searching grows exponentially with the meeting size

and number of bitrate options. Hence, in order to enable GSO-

Simulcast for large meetings, we must first find a way to solve

the global orchestraion problem in real-time.

• Managing priority. The situations are further complicated in a

real meeting because different streams can have different priori-

ties. For example, a speaker’s video or a screen share is usually

more important than others. Dropping such streams may signifi-

cantly degrade the client’s experience. Hence, we need to consider

stream priorities and carefully manage them in a meeting.

• Capturing the global picture. GSO-Simulcast relies on the global

view of a meeting to make decisions. Hence, we must collect

three things: codec capabilities, subscription relations, and net-

work bandwidths. In particular, the network constraints vary

frequently and are usually more precisely measured at the sender-

side. Therefore, we must find a way to timely collect these disag-

gregated pieces of information in a meeting.

• Compatibility with current architecture. Today’s video conferenc-

ing has a complex technology stack that uses many other network

protocols, such as ICE [18], SDP [19], STUN [20], TURN [21], and

RTP/RTCP [22]. Hence, innovations are usually not accessible
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Figure 1: Pie chart of user reported issues in our video conferencing

service.

due to ossified technology stacks. We must figure out a way to

make GSO-Simulcast compatible with current architecture so

that it can be incrementally deployed.

This paper shows how we address each of the above challenges

to make GSO-Simulcast widely deployable with a layered archi-

tecture that splits a conference into the user plane, the media plane,

and the control plane. We introduce the GSO controller that acts

as the "brain" of a conference. We outline the key design compo-

nents including the algorithm, information collection, and feedback

execution that make GSO-Simulcast deployable in production.

Main results:GSO-Simulcast is currently deployed at full-scale in

Dingtalk video conferencing services, servingmore than 500million

users. Based on the statistics from 1 million video conferences per

day over 3 months, we observed significant improvements in key

metrics. The average video stall and voice stall are reduced by more

than 35% and 50%, respectively. The video framerate is improved by

6%. These improvements show the value of the centralized stream

orchestration approach in large-scale video conferencing for the

first time.

Contributions: We make the following contributions:

• To the best of our knowledge, GSO-Simulcast is the first widely

deployed video conferencing system that globally orchestrates

Simulcast flows.

• GSO-Simulcast significantly improves all key QoE metrics in

large-scale deployment.We believe its success has provided a new

path for the future evolution of video conferencing architectures.

• We discuss the design choices, present key principles and tech-

niques, and share our experience in deploying GSO-Simulcast.

Claim: This work does not raise any ethical issues.

2 BACKGROUND

We start by providing the background to help readers better under-

stand the scope of this paper.

2.1 User reported issues

The fast growth of our video conferencing business introduces new

challenges. To help us better identify areas to improve, we collected

user experience issues. The pie chart of the reported issues is shown

in Fig. 1. The top three reported issues are video stalls (29%), voice

stalls (23%), and blurred videos (18%), all of which are root-caused

in the slow-link problem.

2.2 Slow-link problem

One of the biggest challenges in multi-party video conferencing is

the heterogeneous network conditions facing different participants,

which give rise to the slow-link problem, as shown in Fig. 2a. For

simplicity, let’s focus on one publisher (pub1) with an uplink band-

width at 2𝑀𝑏𝑝𝑠 and three subscribers (sub1, sub2, and sub3) with

downlink bandwidth at 2𝑀𝑏𝑝𝑠 , 1𝑀𝑏𝑝𝑠 , and 500𝐾𝑏𝑝𝑠 , respectively.

A natural question arises: What stream bitrate should pub1 send?

Pushing video a stream at 2𝑀𝑏𝑝𝑠 serves sub1 best, but in doing so,

it will cause video stalls at 𝑠𝑢𝑏2 and 𝑠𝑢𝑏3, as their network cannot

sustain such a high bitrate. As a result, the 𝑝𝑢𝑏1 has no choice but to

push a video stream smaller than 500𝑘𝑏𝑝𝑠 , which inevitably hurts

sub1’s and sub2’s user experiences. In other words, in a multi-party

video conference, the subscriber with the slowest link will deter-

mine the video quality received by a group of subscribers. As the

conference size grows bigger, the likelihood of someone who has a

slow link increases. Addressing the slow link problem is crucial in

delivering any satisfactory user experience.

2.3 Why GSO-Simulcast?

Simulcast was introduced to alleviate the slow-link problem dis-

cussed above, as illustrated in Fig. 2b. In Simulcast, a client encodes

a video source multiple times in different bitrates and sends those

streams in parallel to an SFU server. The SFU server selects one

of the streams to forward for each receiving participant based on

the receiver’s network constraint. In Fig. 2b, to accommodate the

bandwidth constraint for each receiver, the SFU forwards the high-

bitrate stream to sub1, the medium-bitrate stream to sub2, and the

low-bitrate stream to sub3, respectively. Regarding the implementa-

tion, one can send multiple RTP streams in a single RTP session as

defined in RFC 8861 [23], so enabling Simulcast with an SFU server

is relatively easy. On top of that, parallel streams used in Simulcast

can be easily generated with standard codecs at user-ends. Hence,

Simulcast retains scalable and cost-effective properties.

However, Simulcast encounters new problems that lead to sub-

optimal performance, owing to the lack of coordination among

senders, receivers, and media servers. To better understand these

issues, we explain through a couple of examples as shown in Fig. 3a,

3b, and 3c. It is worth noting that the actual scenarios are usually

more complicated. In Fig. 3d, 3e, and 3f, we show how the situations

in those examples can be improved, respectively, when we have the

capability to globally control the conference with a GSO controller

that is aware of the full network information.

• Example1: Susceptibility to network congestion. In the upstream,

sending multiple streams consumes more bandwidth. In many

circumstances, the valuable network resource is simply wasted

when a sender pushes a stream that no one subscribes to. In

the example shown in Fig. 3a, 𝑝𝑢𝑏1 pushes three streams to the

SFU, while the SFU decides to only use a 300Kbps stream to 𝑠𝑢𝑏1,

and a 600Kbps stream to 𝑠𝑢𝑏2. As 𝑝𝑢𝑏1 is unaware of the SFU’s

decision, it continues to send a 1.5Mbps stream. As a result, a
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Figure 2: (a) The slow-link problem in multi-party video conferencing, and (b) The Simulcast model.
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Figure 3: Examples of today’s Simulcast’s problems:(a) - (c), and how situations can be improved with global stream orchestration (GSO) in:

(d)-(f), respectively.

major proportion of 𝑝𝑢𝑏1’s uplink bandwidth is wasted and the

network is more likely to congest.

Improvement: The above situation can be improved with GSO,

as shown in Fig. 3d. In the same situation as above, a GSO

controller will notify 𝑝𝑢𝑏1 to stop sending the 1.5Mbps stream

as it is not needed, which ends up not only saving bandwidth but

also reducing the possibility of network congestion.

• Example2: video and network mismatch. When a sender is not

aware of the network constraints of a receiver, it cannot decide

the right bitrate. As shown in Fig. 3b, 𝑠𝑢𝑏1’s downlink bandwidth

is 1.45Mbps, 50Kbps below the large stream’s bitrate (1.5Mbps)

that 𝑝𝑢𝑏1 sends. As a result, the SFU has to downgrade the video

bitrate to 600Kbps, which is significantly lower than what 𝑠𝑢𝑏1

is capable of receiving, causing video and network mismatch and

leading to poor video quality for 𝑠𝑢𝑏1.

Improvement: The above situation can be improved with GSO, as

shown in Fig. 3e. In the same situation as above, a GSO controller

will inform 𝑝𝑢𝑏1 the exact bandwidth of 𝑠𝑢𝑏1, so 𝑝𝑢𝑏1 can tune

the video stream at a fine granularity and fits the network by

sending a video stream at 1.4Mpbs to provide better video quality

for 𝑠𝑢𝑏1.

• Example3: stream competition. When a receiver’s downlink band-

width is limited, streams from different senders are forced to

compete with each other. As shown in Fig. 3c, 𝑠𝑢𝑏1’s downlink

bandwidth is limited to 2.05Mbps, so if the SFU selects a large

stream at 1.5Mbps from 𝑝𝑢𝑏1, the room left can only fit a small

stream at 300Kbps from 𝑝𝑢𝑏2, leading to uneven visual effects.

Improvement: The above situation can be improved with GSO, as

shown in Fig. 3f. In the same situation as above, a GSO controller

will instruct both 𝑝𝑢𝑏1 and 𝑝𝑢𝑏2 to send a stream at 1Mbps to

fairly share the bandwidth, providing a more uniform visual

experience.

3 GSO-SIMULCAST OVERVIEW

In the above discussion, we explain why we need GSO in Simul-

cast. In this section, we provide an overview of GSO-Simulcast.

As shown in Fig. 4, at a high level, GSO-Simulcast separates a

meeting into three planes: the user plane, the media plane, and the

control plane. The user plane is formed by clients who play the role

of publishers and subscribers. Above the user plane sits the media

plane, which consists of a group of accessing nodes that are inter-

connected. The accessing node is responsible for providing media

access to clients and routing media data based on instructions from

the control plane. When a client in the user plane publishes a media

stream, the media packets are received by one of the accessing

nodes, which then forwards the packets directly to receiving clients

in the same region, or to other accessing nodes to further relay the

data to receiving clients in different regions.
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Figure 4: The overview architecture of GSO-Simulcast.

On top of the media plane is the control plane that comprises the

conference node and the GSO controller. The conference node has

two main functions: (1) it handles the signaling with clients and ac-

cessing nodes, and (2) it captures the global picture of a conference,

which is used as inputs to the GSO controller. The information

captured by the conference node includes network bandwidth con-

straints, subscriptions among clients, clients’ codec capabilities,

and other meeting-specific data such as who is the current speaker

and who shares the screen. The GSO controller is the "brain" of the

conference. It performs two jobs: (1) it synthesizes the inputs from

the conference node to generate vectors of fine-grained stream

bitrates that each client is able to send or receive, as well as the

QoE-utility vectors, which contain the QoE utility weights for each

stream bitrate, and (2) it solves a global optimization problem given

the subscription constraints, the codec capability constraints, and

the network constraints. This optimization aims to satisfy each

subscriber’s needs with maximized QoE utility, and the outputs

determine the stream resolution and bitrate configurations for each

client in the user plane.

4 DESIGN

4.1 Control Algorithm

Wefirst introduce the core control algorithmused inGSO-Simulcast.

The challenge is how to map our real-life situations into a mathe-

matical formulation that serves user QoEs, involves practical con-

straints, and at the same time, can be computed in real-time. At a

high level, the algorithm is executed in iterative loops of a three-step

(Knapsack-Merge-Reduction) operation, with each step handling a

particular set of constraints.

Goal: The goal of the control algorithm is to satisfy each sub-

scriber’s needs with maximized QoE utility while complying with

three sets of constraints: the network bandwidth constraints, the

codec capability constraints, and the subscription constraints.

Network bandwidth constraints: Let I = {1, ..., |I |} be a finite

set that represents the labels of |I | clients. For each client 𝑖 ∈ I,

𝐵𝑢𝑖 and 𝐵𝑑𝑖 denote the uplink bandwidth constraint and downlink

bandwidth constraint of the 𝑖-th client, respectively. Notice that

each client can play the role of subscriber and/or the publisher at a

given time, thus for the 𝑖-th client, the sum of the subscribed stream

bitrates must not exceed 𝐵𝑑𝑖 , while the sum of the published stream

bitrates must not exceed 𝐵𝑢𝑖 .

Codec capability constraints: Recall that each client 𝑖 ∈ I may

play the role of publisher and/or subscriber. Let S𝑖 = {𝑠𝑖 : 1 ≤ 𝑖 ≤

|S𝑖 |} be the set of feasible stream bitrates associated with the 𝑖-th

client when he/she plays the role of publisher. Moreover, assume

that each bitrate 𝑠𝑖 is associated with a unique resolution and a

unique QoE utility weight, let R and Q be the set of resolutions

and QoE utility weights, respectively. Two functions are introduced

to define these two associations, 𝑅𝑒𝑠𝑖 : S𝑖 ↦→ R, 𝑖 ∈ I, and

𝑄𝑜𝐸𝑖 : S𝑖 ↦→ Q, 𝑖 ∈ I. As one can imagine, for each 𝑠𝑖 ∈ S𝑖 ,

𝑅𝑒𝑠𝑖 (𝑠𝑖 ) and 𝑄𝑜𝐸𝑖 (𝑠𝑖 ) indicate respectively the resolution and QoE

utility weight associated with the bitrate 𝑠𝑖 . In GSO-Simulcast,

a publisher can send multiple streams at different resolutions in

parallel. For each resolution, a stream can be sent at different fine-

grained bitrates, but no more than one stream is sent at a time. More

specifically, for the 𝑖-th publisher, the streams he/she sends is some

subset S′
𝑖 of S𝑖 such that, 𝑅𝑒𝑠𝑖 (𝑠𝑖1 ) ≠ 𝑅𝑒𝑠𝑖 (𝑠𝑖2 ), ∀𝑠𝑖1 , 𝑠𝑖2 ∈ S′

𝑖 .

Subscription constraints: We assume that each client 𝑖 may sub-

scribe and be subscribed to by sets of other clients excluding him-

self/herself. Thus let N𝑖 be the set of clients that 𝑖 intends to sub-

scribe to and M𝑖 the set of clients that 𝑖 is asked to serve, we must

have N𝑖 ⊆ I \ {𝑖}, and M𝑖 ⊆ I \ {𝑖}. Now, consider a pair of

clients 𝑖, 𝑖 ′ ∈ I such that 𝑖 ∈ N𝑖′ and 𝑖
′ ∈ M𝑖 , or equivalently, 𝑖

is a publisher that is subscribed to by 𝑖 ′. Usually, 𝑖 ′ will indicate

the maximum resolution, denoted as 𝑅𝑖𝑖′ , that he/she is willing to

accept from 𝑖 . Thus, the feasible bitrate set under the subscription

relation between publisher 𝑖 and subscriber 𝑖 ′ can be denoted as

a subset S𝑖𝑖′ of S𝑖 as S𝑖𝑖′ = {𝑠 : 𝑠 ∈ S𝑖 ∧ 𝑅𝑒𝑠𝑖 (𝑠) ≤ 𝑅𝑖𝑖′}. In GSO-

Simulcast, a subscriber 𝑖 ′ is allowed to subscribe to no more than

one stream from each publisher 𝑖 ∈ N𝑖′
3

The optimization problem described above is combinatorial in

nature, and hence, the time-complexity of brute-force searching

grows exponentially with the number of participants and the bitrate

options. Therefore, we need to find a way to transform this problem

into an appropriate approximation to solve it in real-time. Below, we

discuss howGSO-Simulcast solves this problem through iterations

in three steps (Knapsack, Merge, and Reduction), decomposed so

that each step handles a particular set of constraints and is also

efficient to compute. Moreover, to help readers better understand

the procedure, Fig. 5 visualizes the algorithm with three clients A,

B, and C.

4.1.1 Step1 (Knapsack): addressing downlink and subscription con-

straints. We first make an attempt to address the downlink network

3Later, we discuss how subscribers can subscribe to more than one stream from a
publisher in 4.4.
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Figure 5: A brief illustration of the control algorithm with three clients A, B, and C. Each client plays the role of both subscriber and publisher.

For simplicity, each client sends streams in three different resolutions (720p, 360p, and 180p), with each resolution having three bitrate options.

The algorithm is executed in a loop of three-step (Knapsack-Merge-Reduction) operations.

constraints and the subscription constraints discussed above 4. It

turns out that for each subscriber 𝑖 ′ ∈ I, what we need is to fill

the downlink bandwidth by choosing at most one stream from

S𝑖𝑖′,∀𝑖 ∈ N𝑖′ , such that the QoE utility of the subscriber 𝑖 ′ is maxi-

mized. To make notations cleaner, the elements in S𝑖𝑖′ is relabeled

as S𝑖𝑖′ = {𝑠𝑖𝑘 : 1 ≤ 𝑘 ≤ |S𝑖𝑖′ |}. Then we have,

max

∑︁

𝑖∈N𝑖′

|S𝑖𝑖′ |
∑︁

𝑘=1

𝑄𝑜𝐸𝑖 (𝑠𝑖𝑘 )𝑥𝑖𝑘 , 𝑖
′ ∈ I (1)

subject to:

∑︁

𝑖∈N𝑖′

|S𝑖𝑖′ |
∑︁

𝑘=1

𝑠𝑖𝑘𝑥𝑖𝑘 ≤ 𝐵𝑑𝑖′, 𝑖
′ ∈ I (2)

𝑥𝑖𝑘 ∈ {0, 1}, 1 ≤ 𝑘 ≤ |S𝑖𝑖′ |, 𝑖 ∈ N𝑖′ (3)

|S𝑖𝑖′ |
∑︁

𝑘=1

𝑥𝑖𝑘 ≤ 1, 𝑖 ∈ N𝑖′ (4)

Given a particular 𝑖 ′ ∈ I, let 𝑥𝑖𝑘 ,∀𝑖 ∈ N𝑖′,∀𝑘 ∈ [1, |S𝑖𝑖′ |] be the

optimal solution of (1). Then for each 𝑖 ∈ N𝑖′ , the corresponding

stream bitrate in S𝑖𝑖′ selected by 𝑥𝑖𝑘 can be denoted as,

𝑠𝑖𝑖′ =

|S𝑖𝑖′ |
∑︁

𝑘=1

𝑥𝑖𝑘𝑠𝑖𝑘 , 𝑖 ∈ N𝑖′, 𝑖
′ ∈ I (5)

4In a switched video conference, participants tend to receive more streams than
they send. The downlink bandwidth limits are likely to be hit before uplink in a large
conference. Therefore once the downlink constraints are met, small changes to the
solutions are expected to meet the uplink constraints.

together with (3) and (4), we must have that either 𝑠𝑖𝑖′ ∈ S𝑖𝑖′ or

𝑠𝑖𝑖′ = 0. Here for each client 𝑖 ′ ∈ I, we introduce a setD𝑖′ to record

the corresponding result 𝑠𝑖𝑖′ as follow,

D𝑖′ = {(𝑖, 𝑠𝑖𝑖′) : 𝑖 ∈ N𝑖′ ∧ 𝑠𝑖𝑖′ via (5) ∧ 𝑠𝑖𝑖′ ≠ 0}, 𝑖 ′ ∈ I (6)

notice that an ordered pair (𝑖, 𝑠𝑖𝑖′), instead of a pure stream 𝑠𝑖𝑖′ ,

is introduced to properly record the case where 𝑠𝑖1𝑖′ and 𝑠𝑖2𝑖′ are

possibly the same for two different publishers 𝑖1, 𝑖2 ∈ N𝑖′ . The above

problem can be solved as |I | independent multi-choice Knapsack

problems [24, 25]. To see why this is the case, for a given subscriber

𝑖 ′, the downlink is equivalent to a Knapsack with capacity 𝐵𝑑𝑖′ , and

a stream 𝑠 ′
𝑘
∈ S𝑖𝑖′ can be viewed as an item with value 𝑄𝑜𝐸𝑖 (𝑠

′
𝑘
)

and weight 𝑠 ′
𝑘
. There are |N𝑖′ | number of classes, with each class

containing |S𝑖𝑖′ | items, and we only pick at most one item from each

class. The nice thing about such a formulation is that, despite that

such a problem is a computationally hard problem, we can solve

it using dynamic programming, which runs in pseudo-polynomial

time [25, 26]. Step1 determines the candidate set D𝑖′ that contains

the publisher and stream pairs that each subscriber 𝑖 ′ ∈ I requests,

but it depends on later steps whether or not these requests will be

fulfilled.

Step1 is also visualized in Fig 5. Take client A as an example, A’s

downlink pipe can be viewed as a knapsack, and our goal is to pick

one item from each of the B’s and C’s feasible bitrate sets to fill

the knapsack such that its utility is maximized. The resulted bitrate

selection is shown on the right. In this example, A subscribes to

the 250𝐾𝑏𝑝𝑠 (180𝑝) bitrate from B, and the 1.1𝑀𝑏𝑝𝑠 (720𝑝) bitrate

from C.
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4.1.2 Step2 (Merge): addressing codec capability constraints. The

result from Step1 also equivalently determines the set U𝑖 that con-

tains subscriber and stream pairs that each publisher 𝑖 is asked to

serve, which can be denoted as,

U𝑖 = {(𝑖 ′, 𝑠𝑖𝑖′) : 𝑖
′ ∈ M𝑖 ∧ (𝑖, 𝑠𝑖𝑖′) ∈ D𝑖′} (7)

Now given a particular resolution 𝑅, define a subset U𝑅
𝑖 of U𝑖 as,

U𝑅
𝑖 = {(𝑖 ′, 𝑠𝑖𝑖′) ∈ U𝑖 : 𝑅𝑒𝑠 (𝑠𝑖𝑖′) = 𝑅} (8)

For simplification purpose, let’s consider three levels of resolutions,

720, 360, 180 5, and thus a partition of U𝑖 can be denoted as,

U𝑖 = U720

𝑖 ∪U360

𝑖 ∪U180

𝑖 (9)

It is possible thatU𝑅
𝑖 contains more than one stream bitrate, which

violates the codec capability constraints discussed before. We in-

troduce a merging function 𝑀𝑒𝑔(·) that maps the set U𝑅
𝑖 to an

ordered pair as follow,

𝑀𝑒𝑔(U𝑅
𝑖 ) =

{

{(M𝑅
𝑖 , 𝑠

𝑅
𝑖 )}, U𝑅

𝑖 ≠ ∅

∅, U𝑅
𝑖 = ∅

(10)

with,

M𝑅
𝑖 = {𝑖 ′ : (𝑖 ′, 𝑠𝑖𝑖′) ∈ U𝑅

𝑖 } (11)

𝑠𝑅𝑖 = min
(𝑖′,𝑠𝑖𝑖′ ) ∈U

𝑅

𝑖

𝑠𝑖𝑖′ (12)

Notice that an ordered pair (M𝑅
𝑖 , 𝑠

𝑅
𝑖 ) can be interpreted as a poten-

tial policy of publisher 𝑖 as this: Publisher 𝑖 intends to broadcast a

stream with resolution 𝑅 at bitrate 𝑠𝑅𝑖 to a set of subscribers M𝑅
𝑖 .

Denote the updated results after merging as,

P𝑖 = 𝑀𝑒𝑔(U
720

𝑖 ) ∪𝑀𝑒𝑔(U360

𝑖 ) ∪𝑀𝑒𝑔(U180

𝑖 ) (13)

It is not hard to see that |P𝑖 | is smaller than the number of resolu-

tions.

Step2 is also visualized in Fig. 5. In the example, B and C respec-

tively subscribe to the 1.4𝑀𝑏𝑝𝑠 (720𝑝) bitrate and the 1.1𝑀𝑏𝑝𝑠 (720𝑝)

bitrate from A, which are in the same resolution, so they are merged

into one 1.1𝑀𝑏𝑝𝑠 (720𝑝) bitrate. In contrast, A and C respectively

subscribe to the 250𝐾𝑏𝑝𝑠 (180𝑝) bitrate and the 1.4𝑀𝑏𝑝𝑠 (720𝑝) bi-

trate from B, which are in different resolutions, so both bitrates are

kept in the potential policy.

4.1.3 Step3 (Reduction): addressing uplink constraints. After Step1

and Step2, for each publisher 𝑖 ∈ I, we obtain a potential policy

set P𝑖 that satisfies both the downlink network constraint and the

codec capability constraint. However, it is possible that P𝑖 does not

comply with the uplink network constraints. There are basically

three situations:

• Solution found. If P𝑖 ,∀𝑖 ∈ I satisfies the uplink constraint with:
∑︁

(M𝑅

𝑖
,𝑠𝑅
𝑖
) ∈P𝑖

𝑠𝑅𝑖 ≤ 𝐵𝑢𝑖 ,∀𝑖 ∈ I (14)

Then, P𝑖 can be regarded as the optimal policy for each publisher

𝑖 , and the algorithm terminates.

5The algorithm is readily extensible to more than three resolutions.

• Solution violates constraints but is fixable. If (14) is violated for

certain 𝑖 ∈ I, that is
∑︁

(M𝑅

𝑖
,𝑠𝑅
𝑖
) ∈P𝑖

𝑠𝑅𝑖 > 𝐵𝑢𝑖 (15)

then we will try to iterate over the policies (M𝑅
𝑖 , 𝑠

𝑅
𝑖 ) in P𝑖 to see

if (15) can be fixed by replacing 𝑠𝑅𝑖 with some 𝑠𝑖 ∈ S𝑖 satisfying
{

𝑠𝑖 < 𝑠
𝑅
𝑖

𝑅𝑒𝑠 (𝑠𝑖 ) = 𝑅
(16)

which turns out to be a knapsack problem with a small number

of feasible combinations, and thus can be brute forced easily. A

necessary and sufficient condition for such fixing to be possible

is that the sum of all such 𝑠𝑖 that replaces the corresponding

𝑠𝑅𝑖 must not exceed 𝐵𝑢𝑖 when each 𝑠𝑖 is selected as the smallest

possible bitrate, that is
∑︁

(M𝑅

𝑖
,𝑠𝑅
𝑖
) ∈P𝑖

min
𝑠𝑖 ∈S

𝑅

𝑖

𝑠𝑖 ≤ 𝐵𝑢𝑖 , 𝑖 ∈ I (17)

whereS𝑅
𝑖 = {𝑠𝑖 : 𝑠𝑖 ∈ S𝑖∧𝑅𝑒𝑠 (𝑠𝑖 ) = 𝑅}. If (17) holds, thenwe can

for sure find an optimal policy for each publisher 𝑖 by replacing

one or more (M𝑅
𝑖 , 𝑠

𝑅
𝑖 ) in P𝑖 with some (M𝑅

𝑖 , 𝑠𝑖 ) satisfying (16),

and the algorithm terminates.

• Solution violates constraints and is not fixable. If there exists 𝑖 ∈ I

such that (17) is violated, then the problem can not be fixed by

tuning down some 𝑠𝑅𝑖 to a smaller bitrate 𝑠𝑖 satisfying (16). This

means that a certain resolution is not feasible and should be

excluded from the feasible stream set S𝑖 . Let

�̃�𝑖 = max
(M𝑅

𝑖
,𝑠𝑅
𝑖
) ∈P𝑖

𝑅𝑒𝑠 (𝑠𝑅𝑖 ) (18)

then the updated feasible stream set is defined as

S
𝑢𝑝𝑑𝑎𝑡𝑒
𝑖 = S𝑖 \ S

�̃�𝑖
𝑖 (19)

where,

S
�̃�𝑖
𝑖 = {𝑠𝑖 : 𝑠𝑖 ∈ S𝑖 ∧ 𝑅𝑒𝑠 (𝑠𝑖 ) = �̃�𝑖 } (20)

Then we go back to Step1 to start a new iteration given S
𝑢𝑝𝑑𝑎𝑡𝑒
𝑖 .

It is worth noting that, we should shrink the feasible stream set

for one publisher 𝑖 at a time.

Step3 is also visualized in Fig. 5, where the potential policy for

each client obtained after Step2 is checked against the respective

uplink bandwidth constraint. If the check is passed, then we obtain

the final solution and terminate the algorithm. Otherwise, if (17)

holds, we fix the policy by replacing bitrates with lower ones in

the same resolution. Finally, if (17) does not hold, we reduce the

stream set (e.g., removing all streams in 720p for A) and start the

next iteration.

Convergence of the algorithm: The above algorithm converges

because, in each iteration, it would either find a solution and termi-

nate or reduce the feasible bitrate set for some publisher 𝑖 . Therefore

the number of iterations is limited by the number of publishers

times the number of resolutions.

Examples: To provide a better idea of how the above algorithm

works, we provide three examples in Table. 1. The stream resolu-

tions, corresponding bitrate options, and their QoE utility values are
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Table 1: Examples of GSO-Simulcast’s control algorithm.

Bitrate levels / QoE Client Bandwidth Subscription Final solution

Resolution Bitrate(Bps) QoE Uplink Downlink Sub1 Sub2 720P 360P 180P

720P

1.5M 1200

case1

A 5M 1.4M A-sub-B-360P A-sub-C-180P 1.5M 400K

1.3M 1050 B 5M 3M B-sub-A-720P B-sub-C-360P 800K 100K

1M 750 C 5M 500K C-sub-B-360P C-sub-A-760P 800K 300K

360P

800K 700

case2

A 5M 5M A-sub-B-360P A-sub-C-180P 1.5M

600K 530 B 600K 5M B-sub-A-720P B-sub-C-360P 600K

500K 440 C 5M 5M C-sub-B-360P C-sub-A-760P 800K 300K

400K 360

case3

A 5M 5M A-sub-B-360P A-sub-C-180P 1.5M 400K

180P
300K 300 B 600K 700K B-sub-A-720P B-sub-C-360P 600K

100K 100 C 5M 5M C-sub-B-360P C-sub-A-720P 300K

situated furthest to the left in the table. The clients, their subscrip-

tions and the bandwidth constraints in the uplink and downlink are

listed for each case and shown in the middle. Each case describes a

different scenario: in case1, client C’s downlink is limited; In case2,

client B’s uplink is limited; In case3, client B’s uplink and downlink

are both limited. The final solution that indicates the streams for

each client to publish is shown on the right.

4.2 Seizing the global picture

In order to perform the centralized control as discussed in 4.1, GSO-

Simulcast needs to capture the global picture of a meeting. Below,

we discuss how to collect those types of information, including

codec capabilities, subscription relations, and network bandwidths.

• Subscription information. There is not much change in the col-

lection of subscription information compared to a meeting that

does not employ GSO-Simulcast. As usual, the participants pass

their subscription intents to the conference node via signaling

channels.

• Codec capability information. The codec capability information

is collected through the SDP negotiation process, which is car-

ried out before a participant joins a meeting, but with minor

modifications. We also send a customized simulcastInfo message

together with the SDP offer to include additional information

so that the conference node is not only able to collect the video

codec type and the number of streams supported, but also the

stream resolutions and the maximum bitrates with respect to

each resolution. In the negotiation, we assign a different synchro-

nization source (SSRC) for each stream resolution to facilitate

the feedback control, which will be discussed later.

• Bandwidth information. The network information consists of the

downlink bandwidths and the uplink bandwidths. In GSO, we

rely on sender-side bandwidth estimation, which offers better

accuracy than receiver-side estimation. As a result, collecting the

downlink network bandwidths is relatively straightforward, as

they can be directly reported from accessing nodes to the confer-

ence node. On the contrary, the uplink bandwidths are measured

at the client-side and are disaggregated. To facilitate timely re-

port of such disaggregated information, we utilize an in-band

reporting approach, where each client reports the bandwidth

information in an application-defined RTCP packet (type 204 in

RFC 3550) [22]. The application-defined RTCP packet is intended

for experimental use when new features are developed, which fits

our purpose. More specifically, we define the message for sender

estimated maximum bitrate (SEMB) following the definition of

receiver estimated maximum bitrate (REMB) in [27]. The value

of the reported bandwidth 𝐵 is calculated as 𝐵 = 𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ∗2𝐸𝑥𝑝 ,

where𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 and 𝐸𝑥𝑝 follow the definition in draft [27].

4.3 Feedback Control

Once GSO-Simulcast’s controller has found a new solution, con-

trol feedback is sent to configure the streams for each sending

participant. The timeliness of such feedback is essential. Hence,

similar to the bandwidth report discussed above, the control feed-

back is also sent out with an in-band approach. We currently reuse

the temporary maximum media stream bitrate request (TMMBR)

message format for this purpose, which is defined in RFC 5104 [28].

The TMMBR conveys a temporary bandwidth limitation and is sent

from an accessing node to a sending participant. TMMBR has been

introduced as a transport layer feedback message (RTCP packet

type 205). For example, RFC8888 [29] describes how to use TMMBR

message to facilitate congestion control. Consequently, there is a

potential ambiguity if we reuse TMMBR for a different purpose. In

order to eliminate such ambiguity, we send the TMMBR for stream

orchestration in an application-defined RTCP packet with type 204.

Note that because we assign different SSRCs to streams of different

resolutions as discussed in 4.2, the SSRC field in the TMMBR mes-

sage allows us to specify which stream to configure. When a stream

is disabled, the 𝑀𝑥𝑇𝐵𝑅 𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 is set to zero. We also need to

ensure the reliability of the feedback message. Because a TMMBR

message is sent in an RTCP packet, there is no reliability guarantee

on the packet’s delivery. Therefore, upon receiving a TMMBR, a

sending participant sends out a corresponding temporarymaximum

media stream bitrate notification (TMMBN) message [28]. If the ac-

cessing node does not receive the corresponding TMMBN message,

it will re-send the TMMBR message, subsequently triggering the

transmission of another TMMBN.

4.4 Managing Streams

An actual conference scenario is more complicated as video con-

ferencing service providers today offer various advanced features.

Covering each of the possible scenarios is out of the scope of this

paper, but we discuss two basic capabilities that are quite funda-

mental in video conferencing: stream priorities and multi-stream

subscriptions from the one publisher.

Stream priority. As pointed out earlier, not all streams are of

the same importance in a conference. One nice feature about the
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Knapsack problem formulation in Step1 of Algorithm 4.1.1 is that

we can easily incorporate stream priority by assigning different QoE

utility weights to streams that come from different participants. For

example, we can give the host’s or speaker’s streams higher QoE

weights to ensure they are included in the solution of the Knapsack

problem. Also, note that it is crucial to consider the ratio of the

QoE utility over the bitrate of a stream. Because when two streams

from different clients compete for the same bandwidth resource,

we prefer to accommodate both with reduced bitrate than to drop

one stream while conceding to the other. Therefore, we want to

make sure that small streams have a higher QoE utility vs. bitrate

ratio than large streams, so that small streams are protected.

Multi-stream subscriptions from one publisher. The Multi-

Choice Knapsack formulation discussed in 4.1.1 is zero-or-one in

nature, which permits no more than one stream from each publisher

for a given subscriber. However, sometimes a receiving participant

needs to subscribe to more than one stream from a sending partici-

pant. For example, in screen-share, a subscriber needs to subscribe

to a screen stream in addition to a camera view. In another example,

when a participant (denoted by X) in a meeting starts to speak

loudly, the other participants would want to subscribe to a high-

resolution camera view of this speaker in addition to a thumbnail

view, a feature called "speaker first". To solve this problem, we add

a virtual publisher X′ to the publisher set so that we still address

the downlink constraints with the same problem formulation (1) in

Step1 4.1.1 by treating X and X′ as different publishers. However,

at the beginning of Step2, we merge X′ with X, so that we treat

them again as the same publisher, which then allows us to move

forward to the codec capability constraints in Step2 4.1.2 and uplink

bandwidth constraints in Step3 4.1.36.

5 EVALUATION

This section presents the evaluation of GSO-Simulcast in four

parts. In the first part, we evaluate GSO-Simulcast’s control al-

gorithm. The the second part, we study the transient response of

GSO-Simulcast. The third part shows the results from various

"slow-link" tests, which is an important step before a feature is

launched into the product. We show the CPU usage on the client

side in the fourth part.

Control algorithm: We start by evaluating the computation time

and QoE optimality (accuracy) against the brute-force algorithm. In

Fig. 6a, we vary the number of subscribers and publishers, and in

Fig. 6b, we vary the number of bitrate levels. Due to the fact that the

brute-force algorithm does not scale well when the meeting size is

large, the experiment size is controlled in the first two experiments.

We show large-scale results later in Fig. 6c without comparing them

with the brute-force algorithm.We plot the normalized computation

time on the left y-axis (in log-scale) and the QoE optimality on the

right y-axis in Fig. 6a and Fig. 6b. The QoE optimality is measured as

the ratio of the QoE summation in Eq. (1) of GSO’s control algorithm

vs. that of the brute-force algorithm.

• In the first experiment shown in Fig. 6a, the computation time of

the brute-force approach grows exponentially with the number

6Note that a screen-share video and a camera video have different SSRC and will
not be merged.

of participants7, so it becomes intractable when the number of

participants is large. In contrast, GSO’s control algorithm is much

more efficient. The QoE optimality in all cases is close to one,

which verifies the accuracy of the algorithm.

• In the second experiment shown in Fig. 6b, the computation time

of the brute-force approach grows exponentially with the number

of bitrates, which makes it impossible to use when we want

to implement fine-grained bitrate policies. In contrast, GSO’s

control algorithm scales linearly with the number of bitrates,

enabling us to implement fine-grained bitrate policies. Again, in

all cases, the QoE optimality is close to one, which shows the

effectiveness of the GSO control algorithm.

• In the third experiment shown in Fig. 6c, we measure the com-

putation time of the control algorithm when the meeting size is

large. Each tuple is denoted as (# of publishers, # of subscribers, #

of bitrates). The figure shows that the proposed control algorithm

scales linearly with the number of subscribers and bitrates and

quadratically with the number of publishers. Therefore, we can

achieve real-time control with fine-grained bitrate policies even

for meetings with hundreds of participants.

Transient response in real time: To understand how GSO adapts

video bitrates to abrupt network changes in real time, we study the

transient video bitrate response in Fig. 7. The x-axis shows the time

while the y-axis shows the video bitrate. In the experiment, after 20s,

we set downlink bandwidth limit to 750Kbps, 625Kbps, 500Kbps,

and 375Kbps, respectively. The bandwidth is later recovered after

57s. As shown in Fig. 7a, GSO-Simulcast is able to quickly adapt

to abrupt bandwidth changes. We can also see the benefit of fine-

grained bitrates that is enabled with GSO-Simulcast, where in all

cases, it perfectly fits the video bitrate just right under the band-

width limit, resulting in high bandwidth utilization. In contrast,

traditional Simulcast (Non-GSO-Simulcast) is not able to fit video

bitrate into the bandwidth constraints due to limited number of

bitrate levels, as shown in Fig. 7b. For example, when the network

is limited to 625Kbps, coarse-grained Non-GSO-Simulcast has to

downgrade to a 300Kbps streamwhile fine-grainedGSO-Simulcast

can choose to send a 600Kbps stream to fit the bandwidth constraint,

and thus, reducing the network and bandwidth mismatch. Note

that GSO-Simulcast’s ability of using fine-grained bitrate is at-

tributed to the fact that it treats the stream orchestration problem

as a automated global optimization, while traditional Simulcast is

driven by template-based empirical stream policy and it immedi-

ately becomes too complicated to scale to more than a few number

of bitrate levels.

Slow-link experiments. Before a feature’s deployment, we need to

conduct a series of slow-link experiments to make sure it can cover

a variety of corner cases. These cases are listed in Table. 2, which

reflect various poor network conditions, including high packet

losses, limited bandwidths, and significant jitters. The tests are

carried out in a small meeting setup with specialized equipment so

that we have full control of the network environments

We show the normalized video framerate, video quality 8, as well

as video stall rate 9 across different cases in Fig. 8. We compare the

7shown as a straight line in the log-scale plot
8Video quality is measured as VMAF score [30].
9Video stall is measured as the percentage of video playback intervals, in which

the maximum delay between two consecutive frames is larger than 200ms.
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Figure 6: Performance of GSO control algorithm. (a) and (b): the normalized computation time and accuracy(measured as QoE optimality of

GSO vs. the brute force). (c): the normalized computation time when the meeting size and the number of bitrates become large.
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Figure 7: Transient video bitrate adaptation of (a) GSO-Simulcast,

and (b) Non-GSO-Simulcast. After 20s, the down-link’s bandwidth

is abruptly limited to 750Kbps, 625Kbps, 500Kbps, and 375Kbps,

respectively, and is later recovered.

performance of GSO to Non-GSO, and the other two commercial

video conferencing apps from top competitors. Fig. 8 shows that

GSO adapts to slow-links much more swiftly across all cases, which

not only achieves better stability in framerate and video quality but

also avoids video stalls. In contrast, Non-GSO and the competitors

cannot handle all cases, in many of which they exhibit high video

stall, poor visual clarity, and framerate drop.

CPU usage on client side: It is important to make sure that users

do not experience high CPU usage when using GSO-Simulcast.

In Fig. 9, we show the average CPU utilization of Dingtalk App

(GSO version vs. Non-GSO version) in three different application

scenarios (video conferencing, audio conferencing, screen sharing)

measured on Huawei P30. The use of GSO-Simulcast in video

conferencing and screen sharing only slightly increases the CPU

usage. On the sender-side, the CPU usage increases less than 1%,

and on the receiver-side, the CPU usage increases less than 2%.

Table 2: Network conditions used in slow-link tests.

Direction Environment Value Case

uplink

jitter
50ms up-50ms

100ms up-100ms

loss
30% up-30%

50% up-50%

bandwidth-limit

0.5Mbps up-0.5M

1Mbps up-1M

1.5Mbps up-1.5M

downlink

jitter
50ms down-50ms

100ms down-100ms

loss
30% down-30%

50% down-50%

bandwidth-limit

0.5Mbps down-0.5M

1Mbps down-1M

1.5Mbps down-1.5M

The impact on audio conference is negligible, which is expected as

pure audio communication is not handled by GSO-Simulcast. The

above result shows that the impact GSO-Simulcast on the CPU

utilization is minimal and meets our criteria for wide deployment.

6 DEPLOYMENT

To this date, GSO-Simulcast has been deployed at full-scale in

Dingtalk and serves all our clients. This section presents the over-

all statistics of the core metrics 10, including the video stall, voice

stall, and video framerate. We started our initial deployment of

GSO-Simulcast on Nov. 20th, 2021, gradually increased the deploy-

ment coverage until we reached the point of full-scale deployment

on Dec. 20th, 2021. We support up to 15 video bitrates in GSO-

Simulcast based on the devices’ codec capabilities. Due to confi-

dentiality, all reported metrics are normalized against the largest

value in the dataset. Our statistical data samples 1 million confer-

ences per day, and the total dataset includes more than 100 million

conference samples.

Video stall, voice stall, and video framerate. Fig. 10 reports the

normalized average video stall, voice stall and video framerate by

10Voice stall is measured as the percentage of audio playback intervals whose
audio packet loss is larger than 10%.
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Figure 8: Slow-link test results that include the normalized video framerate, video quality, and video stall.
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date, which are the most critical metrics for user experience11. We

make the following observations:

• With the deployment of GSO-Simulcast, all three metrics im-

proved. The improvement became more significant as the deploy-

ment scale became larger, indicating strong positive correlations.

• Compared with the metrics before the initial deployment, the

average video stall, voice stall, and video framerate after the full-

scale deployment improved by 35%, 50%, and 6%, respectively,

which are significant for large-scale video conferencing services.

• The improvements in video stall and video framerate were di-

rect outcomes of GSO-Simulcast’s stream orchestration. The

improvement in voice stall was due to the reduced network con-

gestion as GSO-Simulcast swiftly adapted video to slow-links

at a fine-bitrate granularity.

• We observed significant improvement (7.2%) of users’ satisfaction

score (the percentage of users’ positive feedback) as shown in

Fig. 11. The user satisfaction score also increased with the deploy-

ment of GSO-Simulcast, indicating strong positive correlations.

11Because video quality analysis requires specialized tools, we currently do not
collect this metric online.

Therefore, we conclude that GSO-Simulcast has significantly en-

hanced our users’ experience and proved its value in the actual

deployment.

Orchestration frequency: Fig. 12 plots the CDF of GSO-Simulcast’s

control algorithm 4.1 call interval, which is the time gap between

two consecutive control events. A proper control frequency is key to

the success of GSO-Simulcast. A control frequency that is too high

control would waste computation power while a control frequency

that is too low could not catch up with network changes in real

time. In our deployement, GSO-Simulcast orchestrates streams

every 1.8s on average. The maximum call interval is 3s, making sure

the stream configuration is up to date. The minimum call interval

is 1s, avoiding frequent updates that are unnecessary.

7 EXPERIENCE

In this section, we share the experience and lessons learned in

deploying GSO-Simulcast.

Avoiding video quality oscillations. Bandwidth fluctuations in

slow-links may cause GSO-Simulcast to readjust video bitrate

back and forth frequently, thus causing a video quality oscillation

that lowers users’ visual comfort. Our solution is only to upgrade

bitrate when we obtain enough confidence in the bandwidth mea-

surements. In particular, we mark a video stream that has been

downgraded, and when the controller later determines that an up-

grade is needed, we only allow such an upgrade if the bandwidth

increase has surpassed a threshold to filter out the noisy fluctuations

in measurements.

Addressing bandwidth over-estimation. Bandwidth estimation

plays an important role in delivering the desired performance. In

GSO-Simulcast, we use transport-wide congestion control [31] for

its flexibility. One problem we encountered was that GCC-like [32]

congestion controls tend to over-estimate a link’s bandwidth for a

small stream as the associated loss rate and latency are typically low

in this scenario. An overestimate might mislead GSO-Simulcast to
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Figure 10: The overall statistics of core Dingtalk video conferencing metrics (average video stall, voice stall, and video framerate), from Oct.1st,
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Figure 11: The overall statistics of Dingtalk’s user satisfaction score

(normalized) from Nov. 12th, 2021 to Dec. 24th, 2021.
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start pushing high-bitrate stream, causing link congestion. To ad-

dress this issue, we send probing packets in short bursts controlled

by a pacer to probe the bandwidth upper bound. It is worth noting

that the control of the probing redundancy needs to be carefully

adjusted to reduce the traffic overhead.

Reducing message reporting frequency. It is critical to con-

trol bandwidth reporting message frequency. Otherwise, we might

overwhelm the conference node. We implement both a time trig-

ger and an event trigger. The time trigger periodically updates the

measurements while the event trigger is fired to update bandwidth

only if its change is significant.

Protecting audios. Even though an audio signal occupies small

bandwidth, audio loss is often less tolerable. Therefore, we need

to leave sufficient bandwidth room for the audio signal. In GSO-

Simulcast, when we obtain a bandwidth measurement, we subtract

a "protection" bandwidth from it to further avoid video streams

eating the audio stream’s bandwidth.

Design for failure. Dingtalk must maintain the service when

failure happens. It becomes particularly important for system like

GSO-Simulcastwhere centralized control is involved. On the client

side, one typical exception is that while a server instructs a client

to send multiple streams, however, only a low bitrate stream is

received. In such a scenario, GSO-Simulcast implements a down-

grade logic that automatically switches the high-bitrate subscrip-

tion to a low-bitrate subscription. One the server side, when an

exception is raised, GSO-Simulcast would ask clients to fall back

to single stream configuration so that the service could continue,

however, at the cost of reduced QoE.

8 RELATED WORK

GSO-Simulcast relates to past works in the following areas:

State-of-the-art Simulcast: Simulcast has gained popularity in

recent years [11] due to its cost-effectiveness and scalability, and

is currently supported by a number of implementations, includ-

ing, Chrome [13], Amazon Chime [12] and Janus Gateway [33].

However, all these solutions adapt video based on a fragmented

network view, and thus, they are limited by a number of issues

such as video and network mismatch, poor network utilization, and
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link congestion that lead to suboptimal performance. Moreover,

they typically use template-based adaptation policies [12]. Even

with coarse-grained bitrates, such policies are already complicated.

Adding more fine-grained bitrates would make such template-based

policies unmanageable. Note that a global flow optimization ap-

proach was considered in partitioned-simulcast [34, 35]. However,

[34] was limited to theoretical study and only had simulation results

up to 6 users, while [35] only considered a one-to-many scenario

where a single sender was in the conference. Evaluation in [35]

was also limited to a setup of up to 10 receivers. In contrast, GSO-

Simulcast is the first deployed Simulcast that uses a global stream

control and optimization approach, and overcomes various limita-

tions in the state-of-the-art Simulcast solutions.

P2P-based and MCU-based architectures: In the P2P-based ar-

chitecture, participants send media streams to each other directly,

without the involvement of an intermediary server [36ś39]. The

P2P-based architecture does not scale well in a multi-party confer-

ence [36, 40], where the total number of required P2P connections

would increase quadratically with the conference size. Handling a

large number of connections not only puts processing burden on

the peer, but also causes congestion in the paths. In the MCU-based

architecture [41ś43], each participant establishes a connection with

the MCU server. After receiving the upstream media data, the MCU

generates a composite stream containing all of the upstreams re-

ceived from the participants. Compared to the P2P-based architec-

ture, the MCU-based architecture allows more efficient network

usage, but an MCU generally needs to mix a lot of video streams

in real-time, and thus, is expensive due to its need for a lot of

processing power.

Transcoding and SVC: Transcoding [6ś8] is the process of con-

verting a digital video stream from one format to another. With

transcoding, a centralized media server can change the bitrate of a

media stream via transrating or transsizing. However, transcoding

places a significant burden on the media server, which is costly [9].

Scalable video coding (SVC) [10] is a technique that encodes a video

stream in multiple layers, either through temporal scalability or spa-

tial scalability. SVC has received a lot of interests [44], as it allows

a single video stream to adapt to multiple bitrates. However, the

problem with SVC is codec interoperability [45], as it would need

every participant in a video conference to support scalable encod-

ing/decoding. Many hardware H264 codecs today do not support

scalability [45].

Codec and transport collaboration: There is another type of

adaptation in video conferencing, which is through the codec and

transport collaboration [46, 47]. Typically, a codec’s output rate is

adjusted with feedback from congestion controller [32]. Salsify [47]

implements a codec that permits frame-by-frame adaptation to

enable an even tighter collaboration. Such adaptation is helpful to

reduce single link congestion and is also incorporated in our stack,

but in a multi-party conference that is not P2P-based, its power is

limited as an upstream codec cannot adapt to multiple downstream

networks simultaneously. In contrast, GSO-Simulcast overcomes

such a limitation with the ability to coordinate upstreams and

downstreams.

ML-based approaches: We have noticed that there is a growing

trend of applying machine-learning techniques to networking sys-

tems in recent years [48, 49]. However, we decide to use a control-

theoretical approach in GSO-Simulcast because of the following

reasons: first, machine learning approaches require a large amount

of high-quality data for training purposes, which is quite expensive

to collect in our scenario. Second, we care about the long tail perfor-

mance, which means that our system needs to perform well even

in the cases not adequately represented in the data set. Finally and

more importantly, the control algorithm presented in Sec. 4.1 can

already achieve near optimal performance. Even though we find

the control-theoretical approach more suitable for our system in

production for the present, we do think machine-learning based ap-

proaches worth more investigation if more sophisticated objectives

are involved.

9 CONCLUSION

This paper introduces GSO-Simulcast, the first widely deployed

video conferencing system that uses global control stream orches-

tration in Simulcast and brings significant values to more than 100

million users to the best of our knowledge. Since GSO-Simulcast

is decoupled from the underlay infrastructure, it is suitable for

multi-cloud deployment. Looking into the future, we believe the

techniques of GSO-Simulcast can be applied to a wide range of

applications, including real-time communication in the upcoming

meta-universe, where it becomes even more challenging to support

3D interactive video conversations.
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