
CellFusion: Multipath Vehicle-to-Cloud Video Streaming
with Network Coding in the Wild

Yunzhe Ni*1,2, Zhilong Zheng*1, Xianshang Lin1, Fengyu Gao1, Xuan Zeng1, Yirui Liu1, Tao Xu1,
Hua Wang1, Zhidong Zhang1, Senlang Du1, Guang Yang1, Yuanchao Su1, Dennis Cai1,

Hongqiang Harry Liu3, Chenren Xu2, Ennan Zhai1, Yunfei Ma1†
1Alibaba Cloud 2Peking University 3Uber Technology

ABSTRACT

This paper presentsCellFusion, a system designed for high-quality,
real-time video streaming from vehicles to the cloud. It leverages an
innovative blend of multipath QUIC transport and network coding.
Surpassing the limitations of individual cellular carriers, CellFu-
sion uses a unique last-mile overlay that integrates multiple cellular
networks into a single, unified cloud connection. This integration
is made possible through the use of in-vehicle Customer Premises
Equipment (CPEs) and edge-cloud proxy servers.

In order to effectively handle unstable cellular connections prone
to intense burst losses and unexpected latency spikes as a vehi-
cle moves, CellFusion introduces XNC. This innovative network
coding-based transport solution enables efficient and resilient mul-
tipath transport. XNC aims to accomplish low latency, minimal
traffic redundancy, and reduced computational complexity all at
once. CellFusion is secure and transparent by nature and does not
require modifications for vehicular apps connecting to it.

We tested CellFusion on 100 self-driving vehicles for over six
months with our cloud-native back-end running on 50 CDN PoPs.
Through extensive road tests, we show that XNC reduced video
packet delay by 71.53% at the 99th percentile versus 5G. At 30Mbps,
CellFusion achieved 66.11% ∼ 80.62% reduction in video stall ratio
versus state-of-the-art multipath transport solutions with less than
10% traffic redundancy.

CCS CONCEPTS

• Networks → Transport protocols; Cross-layer protocols.

KEYWORDS

Multipath QUIC, Network Coding, Video Streaming, Vehicular Net-
works, Self-driving

ACM Reference Format:

YunzheNi*1,2, Zhilong Zheng*1, Xianshang Lin1, FengyuGao1, Xuan Zeng1,
Yirui Liu1, Tao Xu1, HuaWang1, Zhidong Zhang1, SenlangDu1, Guang Yang1,
Yuanchao Su1, Dennis Cai1, HongqiangHarry Liu3, ChenrenXu2, Ennan Zhai1,

*Equal contributions.
† Project lead and corresponding author. Email: yunfei.ma@alibaba-inc.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00
https://doi.org/10.1145/3603269.3604832

Yunfei Ma1†. 2023. CellFusion: Multipath Vehicle-to-Cloud Video Stream-
ing with Network Coding in the Wild. In ACM SIGCOMM 2023 Conference

(ACM SIGCOMM ’23), September 10, 2023, New York, NY, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3603269.3604832

1 INTRODUCTION

The rise of autonomous and electric vehicles driven by companies
like Tesla [1], Waymo [2], Porsche [3], and Toyota [4] is reinventing
cars as "smartphones on wheels" [5]. As this shift unfolds, estab-
lishing reliable connections between these vehicles and the cloud
is becoming increasingly essential. Video streaming from vehicles
to the cloud unlocks a host of novel applications, spanning from
in-vehicle entertainment and gaming to mission-critical tasks that
require a higher degree of reliability and performance. For example,
teleoperated driving (ToD) [6, 7], a mechanism which remotely
overtakes autonomous vehicles when algorithms cannot effectively
handle complex situations [8], requires real-time transmission of
high-definition camera feeds from the vehicle to the cloud. An-
other application is remote diagnostic procedures [9, 10], where
healthcare professionals guide paramedics in administering urgent
treatment remotely. Such procedures can become a reality by trans-
mitting high-definition views from inside an ambulance, along with
the patient’s vital signs, to the cloud.

The fundamental challenge in realizing the new applications
described above is how to continuously support high-bitrate low-
latency video streaming over highly fluctuating cellular links as a
vehicle drives. However, we face two conflicting situations:
• High delay & limited rate of fragile cellular links. Cellular
connection is known to be fragile, and many factors, such as
proximity to a cell tower and obstacles, impact its bandwidth, jit-
ter, and loss [11, 12]. The limited coverage often leads to a limited
data rate and high packet delay. Moreover, as a vehicle drives, it
can easily find itself in cellular "dead spots" [13]. The advent of
5G does not address this problem. Since 5G signals operate on
higher frequencies than 4G, they suffer from greater fluctuation
and attenuation, resulting in even smaller coverage [14, 15].

• Data-intensive & low-latency vehicular applications. In
terms of latency and bandwidth, emerging vehicular applications
can be much more demanding than traditional real-time applica-
tions such as VoIP and video conferencing [16, 17] that typically
need 300Kbps - 2Mbps at < 300ms latency. Taking ToD as an
example, in order for a vehicle to clearly "see" surrounding en-
vironments with sufficient sensing depth, it has to rely on the
aggregated view of many high-definition cameras, requesting
∼30Mbps at < 100ms one-way delay 1 [18, 20].

1For example, the Tesla model 3 is equipped with 8 cameras [18], whereas the
5GAA ToD model [19] assumes to use four 8Mbps cameras.

https://doi.org/10.1145/3603269.3604832
https://doi.org/10.1145/3603269.3604832

Today’s deployed vehicle-to-internet solutions [21–23], such as
Verizon connected car and Tesla premium connectivity, are limited
by a single carrier’s coverage. As a result, they suffer from frequent
signal loss and limited link rate [24, 25]. Past research proposals [26–
28] on vehicle connectivity focused on downloading non-real-time
loads, and were not capable of serving high throughput traffic in
real-time.

In this paper, we introduce CellFusion to meet the emerging
challenge and enable continuous, high-quality, low-latency vehicle-
to-cloud video streaming for the first time. Our idea is to go beyond
the limitation of a single cellular network to build a resilient over-
lay last mile that efficiently fuses multiple heterogeneous cellular
networks to the cloud. To realize this idea, CellFusion synergizes
two fields: multipath transport and network coding.

First, CellFusion builds a novel hardware-software system that
aggregates multiple heterogeneous cellular network resources (§3)
as shown in Fig. 1(a): it deploys a specialized Customer Premise
Equipment (CPE) box in a vehicle (§5), as shown in Fig. 2, and a
group of distributed edge-proxies at CDN Point-of-Presence (PoPs)
(§6) to establish multipath tunnels on top, as shown in Fig. 1(b). Our
implementation aggregates four cellular networks combining 5G
and LTE from three carriers. In this way, CellFusion embraces two
types of diversity: (1) the geographical diversity of different carriers
and (2) the frequency diversity of different technologies, leading to
diversified cellular coverage. As a result, CellFusion significantly
reduces the likelihood of cellular "dead spots" by utilizing diversified
cellular resources that compensate for each other.

Second, CellFusion introduces XNC, as highlighted in the blue
and green parts in Fig. 1(b), to efficiently fuse these underlay net-
work resources to the cloud (§4). A fundamental problem for multi-
path transport in vehicle-to-cloud streaming is that when a vehicle
drives, each cellular link becomes highly volatile and unpredictable,
which makes it difficult to ensure the delay of a packet before the
deadline [29]. As we show later, the cellular link of a high-speed
vehicle suffers from heavy bursty losses that can go up to 100% and

high latency spikes that can reach a few seconds unexpectedly. Gen-
erally, a multipath scheduler predicts path characteristics such as
bandwidth and delay to pick the path for transmitting a packet. As
a result, when a path becomes fluctuant, the scheduler is likely to
make awrong prediction on a path that might later degrade, causing
excessive delay and poor bandwidth resource utilization [30, 31]. To
address the problem, XNC leverages network coding, which mixes
data across time to obtain resilience and efficiency against fragile
cellular links through a unique collaboration with multipath.

Despite the fact that network coding [32, 33] and multipath [30]
transport are relatively mature research areas, past solutions are
intrinsically incapable when it comes to vehicle-to-cloud streaming.
Firstly, traditional network coding-based protocols such as FEC [34],
COPE [32], randomized linear code [35], TCP-NC [36], evolution
code [26], LT code [37], PACE [38], and streaming code [39] fall
short for one ormore of the following reasons: (1) The code designed
for random or bounded loss performs poorly in recovering the
heavy bursty loss. (2) Encoding introduces high latency as a relay
node (e.g., a CPE) has to wait for enough packets to perform block
coding, (3) The code brings significant redundant traffic costs and
reduces bandwidth for effective video transport. (4) The code is too
computationally expensive to use at high bitrates. Secondly, today’s

deployed multipath transports such as MPTCP [40], MPQUIC [41],
and XLINK [29] are designed as fully reliable transport, and hence,
they cause excessive delay under high loss when sending real-time
traffic.

CellFusion’s XNC introduces multiple thrusts of innovations
to address the above challenges all at once. At the base transport
layer, instead of using reliable QUIC [42], XNC leverages the newly
standardized QUIC-Datagram [43] as an unreliable medium and
integrates multi-path features (§4.2). In doing so, it reuses as much
as possible the QUIC transport features (e.g., congestion control, en-
cryption, traversal of middleboxes) that already exist. On top of the
base layer, XNC introduces a partially reliable transport mechanism
with QUIC-based random linear network coding (Q-RLNC) (§4.3),
QoE-aware loss detection (§4.4), and opportunistic one-shot recov-
ery (§4.5). In a nutshell, XNC quickly detects video loss based on
a QoE-aware policy and maximizes its recovery probability with
opportunistic one-shot recovery by retransmitting a sufficient num-
ber of random linear combinations (equations) of lost packets to
utilize all paths’ instantaneous spare capacity opportunistically. As
we will show later in this paper, XNC is designed with the following
nice properties:

• Robustness to bursty loss. Instead of direct forward error correc-
tion, our scheme retransmits lost packets via Q-RLNC, which has
a very flexible redundancy rate that matches the unpredictable
loss rate in real-time, so XNC is highly robust to heavy bursty
loss even up to a 100% loss rate.

• Resilient to unpredictable multipaths. Each coded packet is equiva-
lent to a linear equation of lost packets. So long as a receiver gets
enough equations, it can recover the entire lost range. In this way,
XNC greatly reduces the impact of "bad" path scheduling because
the loss impact of a coded packet on any path becomes identical
and can be immediately remedied when another equation arrives.

• Low latency on-the-fly coding. In our scheme, a new packet is im-
mediately forwarded, while coding is only applied to lost packets.
Thus, no additional delay is required to accumulate a code block
before encoding. Our retransmission scheme is one-shot and op-
portunistically uses paths’ instantaneous spare capacity, so we
also avoid delaying new packets due to bandwidth consumed by
coded packets.

• Low redundancy and low complexity. Our scheme is basically a
systematic code that mostly contains original packets. Therefore,
it achieves almost zero traffic redundancy under good network
conditions with no loss. Moreover, our coding scheme can be
efficiently accelerated using SIMD instructions on embedded
systems.

Architecturally, CellFusion is designed as a connectivity-as-a-
service solution (§6).CellFusion’s back-end is cloud-native. Thanks
to the user-space nature of our transport stack, deploying Cell-
Fusion’s proxy is as simple as running a lightweight container on
edge clouds, which can be easily auto-scaled and managed to ramp
up capacity and provide highly available edge access. Importantly,
CellFusion is secure and transparent by nature. Unlike past works
such as split-TCP [44], which breaks a user connection, CellFusion
tunnels raw IP packets, so it acts transparently in the background
and preserves the security of the original traffic. As an IP tunnel,

(a) End-to-end architecture (b) Component diagram and packet flow

Figure 1: The overview of CellFusion: (a) end-to-end architecture and (b) component diagram and packet flow.

(a) CellFusion CPE box (b) CellFusion CPE’s customized board (c) Deployment in a self-driving vehicle

Figure 2: Photos of CellFusion CPE, its hardware board, and deploying CellFusion CPE in a self-driving vehicle.

CellFusion supports a broad range of passenger protocols, includ-
ing RTP/RTCP, RTSP, and HTTPs.
Results:Wehave testedCellFusion on 100 self-driving vehicles for
over six months, with our back-end running at 50 CDN PoPs across
three states. A deployment photo is shown in Fig. 2(c). Through
extensive road test evaluations, we show XNC achieved a 99th
percentile video packet delay at 73.8ms, representing a 71.53% re-
duction vs. 5G. When streaming video at 30Mbps and 30fps over a
5000km driving distance, CellFusion achieved an average framerate,
video stall ratio, and normalized structural similarity index mea-
sure (SSIM) score of 29.11fps, 0.99%, and 0.93, respectively, with less
than 10% traffic redundancy. It achieved 66.11% ∼ 80.62% reduc-
tion in video stall ratio versus state-of-the-art multipath transport
solutions.
Contribution: To the best of our knowledge, CellFusion is the
first system to support high-quality, real-time vehicle-to-cloud
streaming in-the-wild, meeting today’s ToD requirements. The
core technical contribution of CellFusion is our design, implemen-
tation, and cloud-native solution that uniquely synergize multipath
transport and network coding. We present the detailed software
and hardware design and XNC transport algorithm. We believe that
CellFusion holds great potential for widespread deployment by
Cloud and CDN providers. Offering connectivity-as-a-service on
a universal scale, CellFusion can provide the robust streaming
infrastructure necessary to shape the future of mobility.

Claim: This work does not raise any ethical issues.

2 BACKGROUND AND MOTIVATION

2.1 Teleoperated driving for autonomous

vehicles

Full self-driving was anticipated to enable a market size of 2.3
trillion dollars by 2030 [45]. However, despite big companies and
numerous startups pouring billions of dollars over the past decade,
it has not come close to a wide-scale commercial deployment [46].
The real gap is the so-called "endless" edge cases [47]: situations
such as poor visibility, temporary detours, a fallen tree, sinkholes
on the road, and unexpected events may exceed today’s algorithms’
capability and cause damage, injury, and even death.

Teleoperated driving (ToD) [6, 7, 48], which allows remote inter-
vention and control of a vehicle from a teleoperator when human
experience is needed, is an emerging technology and is seen as
the answer to various problems that today’s autonomous driving
encounters, especially in the early stages when the algorithms are
still learning. The detailed use cases and requirements of ToD are
currently being investigated by several initiatives, projects, and as-
sociations, including European Union’s 5GMobix and 5GCoCor [49],
and the 5G automobile association (5GAA) [19].

The success of ToD, however, critically relies on our ability to
support high-quality, high bitrate, and real-time vehicle-to-cloud
video streaming to capture the 360𝑜 view of a vehicle in the first

-120
-90
-60

R
SR

P
(d

Bm
) LTE 5G

0
15
30

 0 60 120 180

SI
N

R
 (d

B)

Time (s)

(a) RSRP and SINR fluctuation

 0

 50

100

 0 60 120 180

Lo
ss

 ra
te

 (%
)

Time (s)

LTE-10 LTE-30 5G-10 5G-30

(b) Packet loss rate

0

1

2

3

 0 60 120 180

Pa
ck

et
 d

el
ay

 (s
)

Time (s)

LTE-10 LTE-30 5G-10 5G-30

(c) Packet delay (one-way)

 0

 0.2

 0.4

 0.6

 0.8

LTE-10
LTE-30

 5G-10
 5G-30

SS
IM

 s
co

re

 0

 6

 12

 18

 24

LTE-10
LTE-30

 5G-10
 5G-30

St
al

l r
at

io
 (%

)

 0

 7

14

21

28

LTE-10
LTE-30

 5G-10
 5G-30

Avg. F

Av
g.

 F
PS

(d) QoE performance

Figure 3: Characteristics of a single 5G or LTE cellular link when upstreaming videos at 10 and 30Mbps from a moving vehicle.

place. 5GAA needs the support of ∼ 30Mbps video bitrate with
<100ms latency. The 5GCoCor requires an uplink at 8-30Mbps and
a latency of <80ms for indirect control. While ToD is crucial to make
the self-driving era practical, the above requirements are visionary
and are beyond the capability of today’s vehicle solutions.

2.2 Challenges in vehicle-to-cloud streaming

via a single cellular link

To understand the challenges, we characterized cellular links in 5G
and LTE when upstreaming a real-time video to a cloud server from
a moving vehicle. In the course of our measurements, we conducted
experiments by streaming an RTSP video at 30fps with bitrates of
10Mbps and 30Mbps over a single cellular link. These experiments
took place while driving a vehicle around a typical metropolitan
area. For each second during the streaming session, we collected
two types of signal metrics at the physical layer from the cellular
module driver: Received Signal Received Power (RSRP) and Signal
to Interference and Noise Ratio (SINR). At the transport layer, we
determined the packet loss rate and packet delay per second by
utilizing the appPacketID and timestamp fields. The packet loss
rate was calculated as the number of received application packets
(𝑟𝑒𝑐𝑣_𝑎𝑝𝑝_𝑝𝑘𝑡_𝑐𝑛𝑡) divided by the range of the appPacketID field2.
The packet delay was calculated as the difference between the
received time and sent time3. At the application layer, we calculated
the QoE metrics as defined in Appx. C. Our measurements in Fig. 3
reveal the following:
Unstable signal coverage. Fig. 3(a) shows that both the RSRP
and SINR exhibited significant and random fluctuations that could
vary more than 30dB within a few seconds. We also note that 5G’s
signal experiencedmore considerable fluctuations than LTE, and the
SINR of 5G dropped to 0dB multiple times within 3 minutes. These
observations showed that the cellular signal coverage becomes very
unstable as a vehicle drives.
Heavy bursty loss and large latency spikes. Fig. 3(b) and Fig. 3(c)
show the measured packet loss rate and the one-way packet delay
at the transport layer, respectively. In terms of loss, both the 5G
and LTE links showed a heavy bursty loss, which could be as high
as 100% and last tens of seconds. Regarding the delay, both 5G and
LTE suffered from many latency spikes that could go up to a few
seconds. More surprisingly, due to its shrunk coverage, 5G’s loss
and delay can sometimes be even worse than LTE. The loss and
delay also became worse as the video bitrate increased.

2𝑙𝑜𝑠𝑠_𝑟𝑎𝑡𝑒 =
𝑟𝑒𝑐𝑣_𝑎𝑝𝑝_𝑝𝑘𝑡_𝑐𝑛𝑡

𝑚𝑎𝑥 {𝑎𝑝𝑝𝑃𝑎𝑐𝑘𝑒𝑡𝐼𝐷}−𝑚𝑖𝑛{𝑎𝑝𝑝𝑃𝑎𝑐𝑘𝑒𝑡𝐼𝐷}
3We periodically use NTP to synchronize the clocks and connect to the NTP

server by selecting the cellular interface that has the lowest RTT to NTP server to
minimize the synchronization error.

Poor video QoE. Fig. 3(d) shows the corresponding video QoEmea-
surements, including the frames per second (FPS), video stall ratio,
and the SSIM score. As expected, under such a heavy bursty loss and
high latency spikes, all cases suffered from reduced framerate, high
video stall ratio, and low SSIM score, leading to an unsatisfactory
user experience.
Remark: As a result, neither the 5G link nor the LTE link was
able to support real-time streaming above 10Mbps consistently. It
is worth noting that the heavy bursty loss is significantly different
from the traditional notion of slight random loss in a packet era-
sure channel, which makes many past coding schemes ineffective.
Understanding such cellular characteristics is critical to design the
right transport solution and motivates us to rethink the transport
layer design.

3 OVERVIEW

To address the unpredictable nature of cellular signals in vehicle-
to-cloud streaming, we introduce CellFusion. The high-level end-
to-end architecture of CellFusion is shown in Fig. 1(a), which is
split into three domains: (1) the vehicle domain that consists of
the video client (sender) and CellFusion CPE, (2) the edge domain
that comprises multi-cellular networks and CellFusion edge proxy
servers, and (3) the cloud domain that hosts CellFusion controller
and cloud apps (receiver). Below, we describe their functionality
followed by CellFusion’s packet flow shown in Fig. 1(b).

3.1 Core components

CellFusion CPE: A specialized hardware installed in a vehicle to
serve as the packet gateway for in-vehicle LAN to the Internet.
It has four cellular modules to enable multipath transport over
heterogeneous mobile carriers.
CellFusion proxy server : Proxy servers are container programs
distributed at the cloud’s edge PoPs (CDNs) and serve as edge
access points for vehicle-to-cloud traffic.
CellFusion tunnel-client: A program that runs on top of CellFu-
sion CPE. It sets up the multipath QUIC (MPQUIC) client. In the
uplink, it is the start-point of the unreliable multipath QUIC tunnel,
which drives XNC’s client-end stack to perform packet encoding,
loss detection, and loss recovery.
CellFusion tunnel-server: A program that runs in CellFusion
proxy servers. It sets up the multipath QUIC server. In the up-
link, it is the end-point of the unreliable multipath QUIC tunnel,
which drives XNC’s server-end stack to perform packet decoding
and forwarding.
CellFusion controller: The controller is deployed on the central
cloud and serves as the control and management plane of CellFu-
sion.

3.2 CellFusion’s packet flow

To understand how multipath and XNC are applied to video traffic,
we walk through CellFusion’s packet flow as shown in Fig. 1(b).
Our explanation below focuses on the uplink flow (vehicle-to-cloud).
The downlink flow is similar to the uplink but in the reverse direc-
tion.

In the vehicle domain, the video client (sender) sends out original
IP packets destined to the cloud app (receiver) through the CPE.
These packets are captured from the CPE’s virtual tun interface into
the tunnel-client in user space and then handed to theMPQUIC client.
The XNC in QUIC stack encapsulates packets in XNC Datagram,
which extends the QUIC-Datagram. XNC applies network coding
when loss retransmission is triggered and immediately forwards
first-time-arriving packets. The outputs of the tunnel-client are
QUIC packets whose destination IPs point to the proxy server and
are transmitted via multi-cellular interfaces.

In the edge domain, packets received by the proxy server are
passed to the MPQUIC server. The QUIC stack calls XNC to decode
QUIC’s payload and extract original IP packets. The decoded IP
packets are then sent to the virtual tun interface and forwarded to
the cloud app. Before a packet leaves the proxy server, Source-NAT
is applied to it so that the return traffic from the cloud app will be
routed to the proxy server.

The above flow effectively builds a transparent multipath overlay
tunnel. Therefore, CellFusion doesn’t require modification from
either the video client or the cloud app. The IP packet between
the video client and the cloud app can be end-to-end encrypted,
and CellFusion won’t be able to decipher its content. CellFusion
further adds an extra layer of QUIC’s TLS encryption and header
protection mechanism, so security is never compromised.

3.3 Organization of the following sections

In the following sections, we start by introducing the design of XNC,
our core network coding-based multipath transport on top of QUIC
(§4). Then we describe CellFusion’s CPE hardware design (§5).
After that, we present CellFusion’s cloud-native back-end service
(§6). Finally, we discuss our current deployment and evaluations of
CellFusion (§7, §8).

4 XNC DESIGN

4.1 Logical description

At a high level, XNC is designed with four major objectives:

A Supporting real-time videos at low latency.
B Attaining high data rate via efficient multipath usage.
C Overcoming bursty loss and link unpredictability.
D Low redundancy and low computational complexity.

Objective A implies that XNC should not be fully reliable like TCP,
which suffers from head-of-line blocking issues. Thus, at the base
layer, XNC is built on top of QUIC-Datagram, the unreliable version
of QUIC. The base layer provides essential building blocks such as
encryption and congestion control. Concerning objective B, XNC
incorporates multipath QUIC features with QUIC-Datagram. The
multipath scheduling is done at a packet-level granularity to allow
path aggregation for simultaneous transmission.

Given objective C, we further need a partial reliability mech-
anism to combat loss on top of the unreliable multipath QUIC.
There are two basic approaches: the proactive approach, which
sends feed-forward redundant packets when original packets are
transmitted for the first time, and the reactive approach, which
performs feedback-based loss recovery. The proactive approach
does not fit for heavy bursty losses because to overcome the loss of
many consecutive packets, it would need a very high redundancy
rate. However, as it is nearly impossible to predict when a loss
will happen and how many packets will be lost, one has to consis-
tently apply such a high redundancy rate even when the loss rate is
low. This leads to high redundancy and prohibitive computational
complexity, violating objective D. The problem with the reactive
approach, however, is that the recovery is naturally delayed due
to the feedback loop. The delay can be further exacerbated if the
retransmitted packets are lost (i.e., loss of loss-recovery packets).

Therefore, to use the reactive approach, we must shorten the
feedback recovery loop and improve the retransmission success rate.
To achieve this goal, XNC embraces the opportunity of being closer
to vehicles at the cloud’s edge and introduces three techniques to
address this problem: quick loss detection based on QoE-aware
policy, Q-RLNC for retransmission packets, and opportunistic one-
shot recovery to improve the retransmission success rate. Our key
insight is that when retransmission is needed, it should be triggered
as early as possible and executed in one shot with maximum ef-
fort by leveraging coding protection and fully utilizing multipath
resources. To translate this idea into practice, first, we deploy Cell-
Fusion’s proxy at CDN PoPs to cut the round-trip time of the tunnel
physically. Second, we quickly detect which packets are lost based
on the video’s QoE requirement (bitrate and latency requirements)
to start lost packet retransmission as timely as possible. Third, we
introduce RLNC to the QUIC stack for the first time, and during the
retransmission, our Q-RLNC encodes each retransmitted packet
as a random linear combination from a range of lost packets over
QUIC. We apply Q-RLNC because of the following nice properties:

• It has a flexible coding range that is not limited to fixed length
or sliding window.

• It is rateless, so XNC can encode arbitrary number of packets for
any range.

• Each coded packet is equivalent to a linear equation.With enough
equations received, we can recover all lost packets.

• It is designed to seamlessly work with QUIC.

Finally, we manifest the advantage of Q-RLNC with the opportunis-
tic one-shot recovery, which sends out on each path a number of
random linear equations of lost packets proportionally to that path’s
instantaneous available window. Such a recovery approach utilizes
path diversity by opportunistically exploiting each path’s available
network resource and is also highly resilient to the potential loss of
loss-recovery packets. Since XNC disperses each original packet’s
information onto all available paths, the failure of a packet on one
path can be remedied when a coded packet from any of the other
paths arrives. Note that the actual encoding is only performed on a
range of lost packets. Our encoding is on-the-fly as we don’t need
to purposely accumulate packets before encoding. Moreover, XNC
utilizes bandwidth resources efficiently because it achieves almost
zero redundancy under good network conditions with no loss.

Figure 4: RLNC encoding/decoding process (𝑚 = 8 in this example).

Figure 5: Applying RLNC to packets.

Figure 6: XNC_NC frame structure.

4.2 Base protocol

XNC uses QUIC-Datagram as its base layer protocol stack and
incorporates multipath QUIC functionality on top of it. The QUIC-
Datagram is an unreliable QUIC extension recently standardized by
RFC9221 [43] while the IETF QUIC working group is standardizing
a reliable version of multipath QUIC [41]. Once a multipath QUIC
connection is negotiated, XNC extends the Datagram Frame (type

0x30, 0x31) to encapsulate video packets. Basing XNC upon QUIC
provides several important benefits:

• Thanks to the user-space nature of QUIC, deploying and upgrad-
ing QUIC-based protocol is much easier compared to kernel-
based protocol stacks (e.g., kernel TCP).

• We can reuse as much as possible the mechanism of QUIC, such
as TLS 1.3 encryption, RTT and bandwidth measurements, con-
gestion control, and PMTU discovery.

• QUIC is end-to-end encrypted, and the header of QUIC is also
protected [42], which prevents it from being inspected by WAN
middleboxes. Such a property is important for CellFusion’s
traffic to traverse middleboxes on the public Internet without
being interfered.

Multipath scheduler. Our default multipath scheduler is min-
RTT scheduler [30], which puts first-time sending packets on the
lowest delay path with available congestion window. However, as
discussed later, we do not use this scheduler in our opportunistic
one-shot recovery.
Congestion controller.We use BBR [50] as the congestion con-
troller due to its resilience to packet losses and its ability to quickly
grab available bandwidth.

4.3 Coding scheme of Q-RLNC

4.3.1 Basic RLNC operations. RLNC [36] performs computations in
Galois field 𝐺𝐹 (2𝑚), which is illustrated in Fig. 4. When encoding,
RLNC computes a linear combination of original symbols with
random coefficients to obtain an encoded symbol (𝑚-bit integer),
so each encoded symbol equals to a linear equation in 𝐺𝐹 (2𝑚).
When decoding, RLNC recovers the original symbols by solving
a system of linear equations, given it has received enough linear-
independent encoded symbols. To performRLNC on packets instead
of individual symbols, we treat each packet as an array of𝑚-bit
symbols, as shown in Fig. 5. Before encoding, we first ensure each
original packet has an equal length by zero-padding shorter packets.
Then we generate the encoded packet by separately combining
symbols of the same index in each array. In XNC, we set𝑚 to 8,
where the length of symbols is one byte. This value is chosen to
enable SIMD acceleration of 𝐺𝐹 (2𝑚) arithmetic (§5.2).

4.3.2 Packet format. The encoded packets must carry information
about the linear combination for a receiver to perform decoding. In
XNC, we always apply RLNC on a range of contiguous packets so
that we can encode such information in XNC_Header shown in
Fig. 6, which consists of three 32-bit integer fields:
• packetCount: the count of packets in the range of contiguous
original packets used to encode that packet.

• randomSeed: the random seed used to generate the sequence
of random coefficients to encode that packet [51].

• startID: the ID of the first packet in the sequence of original
packets used to encode that packet.

The sender and receiver need to agree on the same random coeffi-
cient, so upon connection negotiation, we initialize two identical
pseudo number generators (denoted as 𝑔) at both the sender and the
receiver, which derives the sequence of coefficients generated by
𝑔 with seed value 𝑠 as {𝑔𝑠 (1), 𝑔𝑠 (2), ...},∀𝑠, 𝑖, 𝑔𝑠 (𝑖) ∈ 𝐺𝐹 (28) \ {0}.
Assume 𝑝𝑘 denotes original packet with ID 𝑘 , 𝑝 is the coded packet,
and the values of packetCount, randomSeed, and startID
are 𝑛, 𝑠 , and 𝑘 , respectively, then:

𝑝 =

{
𝑝𝑘 n=1,
𝑝𝑘 +∑𝑛−1

𝑖=1 𝑔𝑠 (𝑖)𝑝𝑘+𝑖 n>1

A special case, as shown above, is when 𝑛 = 1. In this case, 𝑝 is
equal to an original packet, 𝑝𝑘 , and 𝑠 is ignored. We discuss more
details about our encoding algorithm in Appx. A.

4.3.3 Enabling RLNC in QUIC. XNC implements the encoder and
decoder as software modules called by the QUIC stack, and we
illustrate the workflow in Fig. 7. Packets’ encoding and decoding
are performed above QUIC’s Datagram layer. Specifically, on the
sender side, incoming packets are first padded and registered in
the encoder module before they can be used for encoding. In this
process, the encoder module saves a copy of each original packet
in its packet pool and assigns a packet number and timestamp. To
send a packet, the QUIC layer calls the encoder API for an encoded
packet and encapsulates it into a QUIC-Datagram frame, marked by
a new type: XNC_NC (0x32), shown in Fig. 6. On the receiver side,
received payloads of XNC_NC frames are passed to the decoder
module. Each time a payload is passed to the decoder module, XNC
calls the decoder API for any possibly decoded original packets. The

Figure 7: XNC workflow: XNC implements the encoder and decoder as software modules called by the QUIC stack.

decoder obtains equations (vectors) from its packet pool, reduces
vectors via Gaussian elimination, and stores reduced results. Once
a new packet is decoded, the decoder hands it to the QUIC stack.

4.4 QoE-aware loss detection

XNC replaces the QUIC’s default loss detection policy with a QoE-
aware loss detection policy to accelerate the recovery process dis-
cussed above. The rationale behind this is that a real-time video
frame is only useful if it is delivered before an application’s dead-
line, so packets with a high risk of passing the deadline should be
retransmitted immediately.

4.4.1 Set threshold for loss detection. XNC applies a new loss detec-
tion threshold, which is the smaller value of an application-defined
time threshold and the QUIC’s PTO [52], and thus, any packet that
is not acknowledged after this threshold is marked as "lost" and
added to the retransmission queue. The application-defined time
threshold is adjusted based on the end-to-end latency need of the
application. Note that our modified loss detection makes XNC’s
loss recovery more aggressive than legacy QUIC. However, the con-
gestion window helps limit XNC’s total number of in-flight packets
and preserve its friendliness towards other users.

4.4.2 Determine encoding range borders among lost packets. XNC
further divides lost packets in the retransmission queue into con-
tiguous ranges, on which we apply Q-RLNC individually. Each
range spans a continuous sequence of packets. Q-RLNC gener-
ates ranges according to the requirements of video streaming and
computation cost. First, lost packets that belong to the same video
frame should be recovered at the same time. To use bandwidth
more efficiently, XNC should either recover a complete frame or
not retransmit any packets in that frame; Second, a too-big range
is also undesirable, as it may introduce additional delay in the en-
coding process and increase computational complexity. In XNC,
we check for three conditions to insert the range border after the
most-recently-sent packet accordingly.
• Current range contains at least 𝑟 packets.
• Current range spans at least 𝑡 seconds.
• If a video frame border is detected, e.g., an RTP header with
extension marking.

Because XNC is transparent to the application’s traffic and may
not always detect frame boundaries in encrypted user traffic, the
third condition is set as an option. In practice, for a 30Mbps video
session, we set 𝑟 to 10 and 𝑡 to 60ms.

4.4.3 Expiration of ranges and lost packets. Unlike fully reliable
transport that tracks lost packets until successful delivery, XNC
only tracks lost packets for a given period because recovery of
expired video packets would not contribute to video QoE but delay
the delivery of newer packets instead. In XNC, we use a config-
urable application-dependent time threshold, 𝑡𝑒𝑥𝑝𝑖𝑟𝑒 , to determine
whether a packet is expired. If the last packet in an encode range
is expired, the range is expired. In this work, we empirically set
𝑡𝑒𝑥𝑝𝑖𝑟𝑒 to 700ms.

4.5 Opportunistic one-shot recovery

With the coding scheme and range borders defined, we now specify
the behavior of XNC’s opportunistic one-shot loss recovery, whose
aim is to exploit all paths’ instantaneous available bandwidth to
maximize recovery rate in one shot.

4.5.1 Compute the minimum number of coded packets 𝑛′. Assum-
ing 𝑛 packets are detected as lost in a range, XNC first computes
the number of coded packets 𝑛′ needed by the XNC receiver to
recover that 𝑛 lost packets. We note that 𝑛′ ≠ 𝑛. Optimally, we
may deliver exactly 𝑛 linearly independent coded packets to decode
all 𝑛 original packets. However, due to the fact that XNC encodes
packets with random coefficients, there is no absolute guarantee of
the linear independence of every subset of generated packets. Thus,
we must deliver 𝑛′ > 𝑛 packets. Fortunately, we only need a small
number of extra packets in order to obtain 𝑛 independent packets
under our random coefficient sampling scheme. Theoretically, we
could prove that:

Theorem 4.1. If𝑛′ = 𝑛+𝑘 coded packets are successfully delivered,

the probability that XNC performs a successful decode is at least

1 − 1
255𝑘×254 .

The proof can be found in Appx. B. Based on the results above,
we let 𝑛′ = 𝑛 + 3 if 𝑛 > 1. The value is chosen to balance bandwidth
overhead and decode probability. When 𝑛 = 1, the encoding range
only contains one packet, and thus, the receiver does not need to
decode, so we let 𝑛′ = 1.

4.5.2 One-shot recovery. After obtaining 𝑛′, XNC sums up all the
available congestion windows on each usable path, denoted as 𝑏.
If 𝑏 < 𝑛′, the recovery operation is delayed. XNC may perform
recovery anytime later, before the expiration of the lost packets
(§4.4.3). In other words, we do not transmit recovery packets to
waste bandwidth when we know the network bandwidth surely
cannot meet our needs. If there are enough available congestion

windows (i.e.,𝑏 ≥ 𝑛′),XNC distributes up to𝑏 encoded packets onto
all available paths (proportional to each path’s available window
size). We further limit the number of packets sent on each path
to be smaller than 𝜌 × 𝑛′, where 1 < 𝜌 < 1.2. When 𝑛 = 1, we
simply send one packet on each usable path to minimize the delay.
After that, XNC forgets any lost packets involved in the recovery
operation.

5 CELLFUSION’S CPE

5.1 Customized hardware design

CellFusion’s in-vehicle CPE box is a specially designed hardware
that enables high-performance communication over four cellular
networks simultaneously, as shown in Fig. 2(a) and Fig. 2(b). The
CPE consists of four subsystems: a CPU subsystem, a cellular net-
working subsystem, an interface and power management subsys-
tem, and aWifi/LAN subsystem. For the CPU subsystem, we choose
Rockchip RK3399 [53] as the core CPU, which has dual Cortex-A72
quad Cortex-A53 cores. The core CPU also supports SIMD instruc-
tions that are critical to accelerating XNC operations. The cellular
networking subsystem has 2 Quectel RM500Q-GL [54] as the 5G
modules and 2 Quectel EP06-E [55] as the LTE modules. We use
MIMO to improve cellular performance further: the 5G module has
2TX/4RX antennas, and the LTE module has 1TX/2RX antennas.
The Wifi/LAN subsystem is used for connecting video streaming
sources inside the vehicle. The peak power consumption of the CPE
is less than 50W, and the standby power is less than 25W.

5.2 Acceleration of XNC

In order to achieve high bitrate video transmission, it is crucial
to perform network coding as efficiently as possible. Recall that
in XNC, each packet is treated as an array of𝑚-bit symbols, and
an encoded packet is generated by separately combining symbols
of the same index in each array, which can be computed in paral-
lel (§4.3.1). We perform RLNC with ARM NEON advanced SIMD4

instructions [56] to leverage such parallelism. In XNC, we imple-
ment 8-way 𝐺𝐹 (28) multiplication with the help of vmull_p8
(8-bit polynomial multiplication) NEON intrinsic. Moreover, addi-
tion in 𝐺𝐹 (28) is simply bit-level XOR and could be automatically
vectorized by the compiler. With SIMD, we support 30Mbps video
streaming at < 20% CPU usage on our CPE box.

6 CELLFUSION’S BACK-END SERVICE

6.1 Cloud-native architecture

We design CellFusion’s back-end with a cloud-native architecture
that is simple to deploy and manage. The back-end consists of two
parts: CellFusion proxy servers and CellFusion controller.
Proxy servers. To reduce the access latency, CellFusion proxy
servers are deployed at the cloud’s edge (i.e., CDNs). The user-space
nature of QUIC allows us to deploy them as containers running at
CDN PoPs. Containerization makes it easy to autoscale these proxy
servers to meet the change in demand, offering good scalability and
cost-effectiveness.
Controller. CellFusion’s controller implements the control plane
and is deployed in the central cloud. It serves five main functions:

4SIMD uses a single instruction to perform the same operation in parallel on
multiple data elements of the same type and size.

(1) It authenticates CPE devices so that only legal users are al-
lowed to access the service. (2) It manages configurations for both
CellFusion’s CPEs and proxy servers, which obtain necessary con-
figuration parameters before setting up the multipath tunnel and
XNC. (3) It is responsible for achieving high availability. The con-
troller continuously monitors each proxy server’s health states and
load and performs fail-over when needed. (4) It acts as an orches-
trator that instructs a CPE to several servers that it should connect
to based on the servers’ availability and load. The CPE measures
network delay to these servers and chooses the one with minimal
delay.

6.2 Multi-tenant

Each proxy server is designed to serve many users to reduce de-
ployment costs. Thus, CellFusion tunnel-server implements multi-
tenant support. When multiple vehicles are connecting to the same
proxy server, the controller will allocate a unique private IP ad-
dress for their CPEs’ virtual tun interface to perform Source-NAT
on each packet that goes through it. In doing so, video packets
from the same CPE will have the same source IP address, and the
server will see different source addresses (after decapsulating outer
headers) in packets from other CPEs. With this unique information,
we build a mapping table that associates a CPE’s address with its
tunnel-client’s QUIC connection ID (CID) on the server. In this way,
when the server receives a packet in the return direction, it can
find the corresponding CID via this packet’s destination address
and send this packet to the correct vehicle via the QUIC connection.
In other words, in the packet flow, we actually employ NAT two
times, the first time at the CPE’s tun interface and the second time
at the proxy server’s public network interface.

7 IMPLEMENTATION AND TESTING IN THE

WILD

Implementation details. CellFusion’s base protocol stack is
based on RFC9000 [57], on top of which we implement unreliable
QUIC-Datagram based on RFC9221 [43] and incorporate multipath
features from IETF WG Draft [41]. We implement XNC as software
modules that are called by the QUIC stack. The entire transport is
written in C language with 30K LoC that is portable to different
platforms with minor modifications. Our tunnel-client is running
in OpenWRT [58] on the CPE, and our tunnel-server is running in
CentOS containers. Our controller is an HTTPs server built on the
Java Spring framework. One practical issue is the MTU problem,
which we discuss in Appx. E.
Testing in the wild. CellFusion has been tested on 100 self-
driving vehicles for over six months. A photo of such a deployment
is shown in Fig. 2(c). These test vehicles operate daily in several
metropolitan areas. The coverage and proximity of CellFusion
edge access are key to ensuring low latency and service availability.
We run proxy servers on 50 Alibaba Cloud’s CDN PoPs across three
states. The controller is deployed in the central cloud that serves
both the CPEs and the proxy servers.

8 EVALUATION

In this section, we present the evaluations of CellFusion, which
consists of three parts:

33 66 99 132 165 198 231 254 297 330 363 396 429 462 495 528 561 594 627 660 time (ms)

blocky frames lost frames (video stall)

Figure 8: An example of the received streaming videos from the end-to-end road test: Multipath QUIC (top) and CellFusion (bottom).

 0
 0.2
 0.4
 0.6
 0.8

 1

 M

PQUIC

 M

PTCP

BONDING

CELLFUSION

SS
IM

 s
co

re

 0
 10
 20
 30
 40
 50

 M

PQUIC

 M

PTCP

BONDING

CELLFUSION

St
al

l r
at

io
 (%

)

 0
 6

 12
 18
 24
 30

 M

PQUIC

 M

PTCP

BONDING

CELLFUSION

Av
g.

 F
PS

Figure 9: Measured video QoE metrics of Multipath QUIC, MPTCP, BONDING, and CellFusion in end-to-end road tests.

• End-to-end road test: Firstly, we present the results of end-to-
end road tests, in which we upstreamed real-time high-bitrate
videos from a moving vehicle to a cloud server through CellFu-
sion. The streamed video was a specially made reference video
that allowed us to extract video QoE metrics. We collected results
from over 5000km of driving.

• Statistical results from deployment: Then, we present sta-
tistical results from the deployment of CellFusion on 100 self-
driving vehicles for over six months. These vehicles were running
in metropolitan areas routinely to test self-driving algorithms.

• Benchmarks and ablation studies of XNC: Finally, we further
implemented a number of state-of-the-art multipath solutions
and coding schemes, and ran experiments in controlled environ-
ments to compare with XNC. We also performed ablation studies
to validate the design point of individual components in XNC.

General setup. Unless otherwise stated, in the road test, bench-
marks, and ablation studies, we used ffmpeg [59] and UDP-based
RTSP protocol for upstreaming a real-time video. The streaming
bitrate was 30Mbps at 30fps.

8.1 End-to-end road tests

8.1.1 Evaluation methods. In this test, our testers drove vehicles
equipped with CellFusion’s CPE in metropolitan areas while up-
streaming a reference video through CellFusion’s proxy services
deployed in the CDN PoPs to an RTSP server in the cloud. The
reference video was a specially made video clip, in which we as-
signed a sequence number stamp to each frame, so we could later
analyze received videos against the original one to extract video
QoE metrics such as video stall, framerate, and normalized SSIM
score. We further discuss how video analytics is done with a tool

we developed in Appx. C. Our testers performed testing on different
roads, and the total testing distance was over 5000km.

8.1.2 Other solutions used in the comparison. In this test, we also
compare CellFusion against MPQUIC, MPTCP, and cellular bond-
ing (BONDING). Note that BONDING performed load-balance on a
video stream via hashing its 5-tuple to a cellular interface, so it did
not use a proxy server. To compare different solutions fairly, we
streamed videos through different CPEs to the RTSP server at the
same time, such that evaluations were conducted under the same
network conditions.

8.1.3 Video trace samples. We start by illustrating a sampled pair of
received video traces in Fig. 8. The video trace on the top was from
MPQUIC, while the video trace at the bottom was from CellFusion.
The two video traces were aligned based on the sequence numbers
stamp of video frames. We counted the video frame number per
second to compute the framerate, and we further analyzed frame
intervals to calculate the stall ratio. The alignment enabled us to
measure the SSIM score by comparing a received video frame to a
reference video frame with the same sequence number. As shown
in Fig. 8, the trace fromMPQUIC experienced blockiness and severe
video stall, while the video from CellFusion was much clear and
smooth, indicating much better QoE.

8.1.4 QoE metrics. Next, we show the overall QoE metrics, includ-
ing framerate, stall ratio, and normalized SSIM score of the end-to-
end road test in Fig 9. CellFusion achieved the highest framerate,
the lowest stall ratio, and the most significant SSIM score among
all solutions under test. It is worth noting that CellFusion’s per-
formance variation was also much smaller than others. BONDING
exhibited the largest variations because it could not aggregate mul-
tiple links. Even though MPQUIC and MPTCP aggregated multiple

 0.6
 0.7
 0.8
 0.9

 1

101 102 103

C
D

F

Packet delay (ms)

CELLFUSION
5G-only

LTE-only

(a) CDF of video packet delays

 0

 2

 4

 6

 8

 10

11-01
11-10

11-20
11-30

12-10
12-20

12-30
01-10

R
et

ra
ns

 ra
tio

 (%
)

(b) Traffic cost (from Nov.1st, 2022 to Jan.10th, 2023)

Figure 10: Results collected from deployed vehicles. Video packet

delays were collected from vehicles that ran with CellFusion, LTE-

only, and 5G-only. Traffic redundancy was collected from a vehicle’s

trace log.

links, they could not handle fragile cellular links as a vehicle drove.
In contrast, CellFusion efficiently fused multiple cellular networks
and overcame the challenge of heavy bursty loss and channel unpre-
dictability. As a result, CellFusion achieved an average framerate,
video stall ratio, and normalized SSIM score of 29.11fps, 0.99%, and
0.93, respectively. And CellFusion outperformed the comparative
solutions on all QoE metrics. For example, compared to MPQUIC,
MPTCP, and BONDING, CellFusion reduced the average stall ratio
by 66.11%, 69.35%, and 80.62%, respectively.

8.2 Statistical results from deployment

8.2.1 Evaluation methods. In this part, we report the statistical
results from a six-month testing of CellFusion in 100 self-driving
vehicles. CellFusion was routinely used to enable remote control
and intervention. The Collection of online metrics faces two chal-
lenges: (1) In the actual use, vehicles upstreamed real-time camera
views instead of a reference video; (2) Storing 7 × 24ℎ videos is
costly. Therefore, instead of using video QoEs, we report two met-
rics constantly logged in online environment: video packet delay
and traffic redundancy.

8.2.2 Video packet delay. Fig. 10(a) shows the CDF of video packet
delay when streaming with CellFusion vs. when streaming with
LTE-only and 5G-only. We observed that CellFusion significantly
reduced packet delay, especially at the tail. With CellFusion, the
95th, 99th, 99.9th percentile delayswere 47.4ms, 73.8ms, and 222.3ms
respectively. In contrast, the corresponding delays of LTE-only were
76.1ms, 267.2ms, and 791.9ms, while the delays of 5G-only were

55.8ms, 259.2ms, and 954.7ms. Compared to 5G-only, CellFusion
reduced tail delay by 15.05%, 71.53%, and 76.72% at the 95th, 99th,
and 99.9th percentile, respectively.

8.2.3 Traffic redundancy. Fig. 10(b) shows the traffic redundancy
log trace of CellFusion deployed in a vehicle from Nov.1st, 2022
to Jan.10th, 2023. The daily redundancy cost varied between 1% to
9%. The variation stemmed from the fact that vehicles moved to
different locations that had different network conditions. Because
XNC only applied network coding to loss recovery, redundant traf-
fic was only needed under poor network conditions. Therefore,
CellFusion was highly cost-effective to use online.

8.3 Benchmarks and ablation studies

We further performed a comparative study of XNC with several
past multipath optimizations and coding schemes and an ablation
study of XNC to validate our design points. We performed both
studies in a controlled environment to ensure testing under the
same network conditions.

8.3.1 Controlled experiment. We built our controlled testing en-
vironment with a trace-driven network emulator mpshell from
Mahimahi [60]. We extended this tool to support 4-path emula-
tion. The traces in use were collected from a moving vehicle on
different roads (more details are listed in Appx. D). Each result
was gathered from an experiment with 100 traces. Our controlled
testbed consisted of two servers in the same local area network. On
the first server, we ran the tunnel-client and tunnel-server, which
were connected through the mpshell emulator. The first server also
hosted the video-client (using ffmpeg), which streamed video to
tunnel-client. On the second server, we deployed an RTSP server

that received stream traffic from the tunnel-server, and a stream

receiver (using ffmpeg) that received streams from the RTSP server.
At the beginning of each experiment, we started the emulator’s
shell with an assigned trace, then ran tunnel-client and video-client

inside this shell to upstream a reference video.

8.3.2 Other solutions used in the comparison. We compared XNC
with two categories of existing solutions: multipath scheduling op-

timizations and multipath & network coding solutions. In the first
category, we chose four state-of-the-art schedulers that can sup-
port 4 paths (i.e., the scheduling algorithm is scalable): minRTT
scheduler [30], fully redundant scheduler (RE) [61], XLINK [29] and
ECF [62]. We note that there were other solutions in this category
that were limited to 2 paths (e.g., Musher [63] and STMS [64]), and
thus they were not chosen in this study. In the second category, we
chose Pluribus [26], which practically designed network coding in
multipath transport for web traffic.

8.3.3 Benchmark results vs. other multipath optimizations. We first
compare XNC with past multipath scheduling optimizations. We
show the QoE metrics in Fig. 11(a) and the redundant traffic cost
in Fig. 11(b). XNC achieved the highest framerate, the lowest stall
ratio, and the highest SSIM score among all solutions under this
test. XNC’s performance variation was also much smaller than oth-
ers. In particular, XNC reduced the average stall ratio by 86.56%,
82.22%, and 92.75% against minRTT, XLINK, and ECF, respectively.

 0
 0.2
 0.4
 0.6
 0.8

 1

minRTT

 RE
 XLINK

 ECF

 X
NC

SS
IM

 s
co

re

 0
 5

 10
 15
 20
 25

minRTT

 RE
 XLINK

 ECF

 X
NC

St
al

l r
at

io
 (%

)

 0
 6

 12
18
 24
 30

minRTT

 RE
 XLINK

 ECF

 X
NC

Av
g.

 F
PS

(a) QoE performance

10-3
10-2
10-1
100
101
102

minRTT

 RE
 XLINK

 ECF

 X
NC

R
et

ra
ns

 ra
tio

(%
)

(b) Traffic cost

Figure 11: Compare XNC with state-of-the-art multipath scheduling optimizations.

 0
 0.2
 0.4
 0.6
 0.8

 1

Pluribus XNC

SS
IM

 s
co

re

 0
 4
 8

 12
 16
 20

Pluribus XNC

St
al

l r
at

io
 (%

)

 0
 6

 12
18
 24
 30

Pluribus XNC

Av
g.

 F
PS

(a) QoE performance

 0
 10
 20
 30
 40
 50

Pluribus XNC

R
et

ra
ns

 ra
tio

 (%
)

(b) Traffic cost

Figure 12: Compare XNC with a network coding based solution (Pluribus).

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8

C
D

F

Loss Rate (%)

w/o Q-RLNC
Q-RLNC

(a) Impact on loss rate by Q-RLNC

 0
 5

 10
 15
 20
 25
 30

P25 P50 P75 P90 P99

R
ed

uc
tio

n
(%

)

Percentile

(b) Packet delay reduction by QoE-aware
loss detection

Figure 13: Ablation studies on Q-RLNC and QoE-aware loss detec-

tion.

Although RE had a reasonable average stall ratio, it required excep-
tionally high redundant traffic costs (up to 300%). As a result, when
network link bandwidth was constrained, RE could not effectively
use bandwidth for transmission, so at the tail distribution, its stall
ratio was much higher than XNC. In contrast, XNC efficiently fuses
multiple network links with a low redundancy rate (<10%), which
helps it achieve a low stall ratio even at the tail.

8.3.4 Benchmark results vs. Pluribus. We further present the re-
sults comparing XNC to Pluribus. Fig. 12(a) shows the QoE metrics.
We observed that XNC outperformed Pluribus in all the framer-
ate, the stall ratio, and the SSIM score. For example, XNC reduced
the average video stall by more than 81.67% compared to Pluribus.
Meanwhile, as shown in Fig. 12(b), XNC also used 89.49% less re-
dundant traffic. The above results reveal that video-to-cloud stream-
ing is a much more challenging task than traditional web and file
transfer-aware solutions, thus, calling for new innovations.

8.3.5 Ablation study. We performed an ablation study, in which
we studied the impact of Q-RLNC and our QoE-aware loss detection
modules. Fig. 13(a) shows the loss rate with and without XNC’s Q-
RLNC in which we retransmitted original packets instead of coding

 0

 10

 20

 30

10 20 30

Lo
ad

 (%
)

Bitrate (Mbps)

MPQUIC XNC SIMD-XNC

Figure 14: Average CPU load of MPQUIC, XNC and SIMD-XNC on

different streaming bitrates.

packets. Our Q-RLNC module significantly reduced the loss rate
at tail distribution by improving loss-recovery probability, and the
reduction was 15.55% and 41.70% at the 95th and 99th percentile,
respectively. Fig. 13(b) shows the average packet delay reduction
withQoE-aware loss detection vs. without QoE-aware loss detection
at different percentiles. QoE-aware loss detection played a crucial
role in reducing packet recovery time. The improvement was 8.48%
and 28.44% at the 95th and 99th percentile, respectively.

8.3.6 CPU costs ofXNC. TheCPU costs of streaming videos through
MPQUIC without network coding, XNC, and SSIM accelerated XNC
(SIMD-XNC) at different bitrates are shown in Fig. 14. At 30Mbps,
XNC consumed 43.77% more CPU than MPQUIC on average. With
the help of hardware acceleration, SIMD-XNC consumed 23.44%
more CPU than MPQUIC on average and reduced CPU usage by
26.56% from XNC.

9 RELATEDWORK

Multipath transport.Multipath transport [40] provides the abil-
ity of a single connection to use multiple paths simultaneously.
However, the adoption of kernel-based multipath transport such
as MPTCP [40] and MPUDP [65] has been slow due to the need

for OS-level support and middlebox ossification [30]. To address
this problem, there has been growing interest in introducing mul-
tipath features to QUIC, but recent proposals like IETF Multipath
QUIC [41], XLINK [29], and PQUIC [66] are designed as fully reli-
able transport for non-real-time traffic. In contrast, CellFusion is
designed to meet the challenges of real-time applications.
Network coding for multipath. Network coding improves trans-
mission reliability over lossy channels by mixing data across time
and flows [36], and has received much attention in the past [32, 33].
However, there are few practical implementations and empirical
studies to extend network coding to multipath. FMTCP[67], AD-
MIT [68], and SC-MTCP [69] explored the idea of applying FEC
to multipath, but are restricted to either simulation or emulation.
Pluribus [26] experimented with evolution code with two paths
on a corporate bus but was limited to small non-real-time load
(<86KB) and limited link rate (<1.5Mbps). CellFusion differs from
past works in that: (1) It addresses the unique challenges of high-
quality real-time video streaming under high mobility, which is
a more complex problem. (2) It has been fully implemented and
deployed at a large scale in the wild.
Cellular bonding. Several SD-WAN solutions [70–72] implement
cellular bonding capability, which is sometimes confused with mul-
tipath transport. OpenWRT’s mwan3 [73] also implements this ca-
pability. Cellular bonding works by load-balancing sessions across
different interfaces, which is helpful in case of link failover. How-
ever, it lacks transport support for a single link to use multiple
paths simultaneously and cannot adapt to link changes at packet-
level granularity. In contrast, CellFusion is a multipath transport
solution. CellFusion can support a much higher rate and is much
more resilient to weak cellular links.
Mobile video streaming. Recently, various approaches includ-
ing bitrate selection [17, 74–76], video pre-processing [77, 78],
QoE-aware video re-encoding [79, 80], CDN placement optimiza-
tion [81], using feedback from wireless APs [82] and server-side
super-resolution [83] have been used for performance enhancement
of video streaming applications. Different from these approaches,
CellFusion optimizes the underlying network performance with-
out modifying end-host applications. Our approach is orthogonal
to, and could be jointly used with previous works.

10 DISCUSSIONS AND LIMITATIONS

CellFusion demonstrates new possibilities to bring high-quality
real-time video streaming to vehicle-to-cloud communication. How-
ever, our current prototype still has few limitations that are left for
future work.
Server migration. CellFusion establishes a connection between
the CPE and an edge server to minimize communication delays.
The server maintains its stability after the initialization process.
However, when a vehicle has to move over a larger area, the need
for server migration arises. Currently, RFC9000 [42] does not ac-
commodate server migration, but it does allow for extensions to
incorporate this feature in the future.
Venturing beyond cellular connectivity. Our system builds
upon multiple cellular links. However, CellFusion’s network cod-
ing based multi-path connectivity approach might not be confined
to cellular connectivity alone and could potentially accommodate
other wireless technologies, such as satellite communication. This

could possibly extend its usefulness, especially in areas where cel-
lular infrastructure is sparse. But of course, further investigation
and development are needed to fully realize this potential.

11 CONCLUSION

In this paper, we introduce CellFusion, a system that enables high-
quality, real-time video streaming from vehicles to the cloud. Cell-
Fusion adeptly integrates multiple heterogeneous cellular networks
into a unified cloud connection through an innovative software-
hardware design that marries multipath transport with network
coding.

We put CellFusion to the test in a real-world scenario: over a
six-month period, CellFusion was deployed on 100 self-driving
vehicles. Our back-end infrastructure was maintained across 50
CDN Points of Presence (PoPs) spread over three states, and we
conducted extensive road tests covering over 5000km. Our results
demonstrate that CellFusion offers significant improvements over
current technologies. We observed a 71.53% reduction in video
packet delay at the 99th percentile when compared to 5G. Further-
more, when streaming at 30Mbps, CellFusion achieved a reduction
in video stall ratio ranging from 66.11% to 80.62% compared to lead-
ing multipath transport solutions, and this was accomplished with
less than 10% traffic redundancy.

We believe that CellFusion holds great potential for widespread
deployment by Cloud and CDN providers. Offering connectivity-as-
a-service on a universal scale, CellFusion can provide the robust
streaming infrastructure necessary to shape the future of mobility.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments
and feedback. We thank all teams at Alibaba Group that help de-
velop and test CellFusion, especially Ming Zhang, Xin Wu, Haitao
Zhou, Shiye Liu, Taoping Li, Jingyi Xie, Renshan Li and Zizhao
Lei. This work is supported by Alibaba Group through Alibaba
Research Intern Program, National Key Research and Development
Plan, China (Grant No. 2020YFB1710900) and National Natural Sci-
ence Foundation of China (Grant No. 62022005 and 62172008).

REFERENCES

[1] Future of Driving. https://www.tesla.com/autopilot, 2022.
[2] Waymo. https://waymo.com/, 2022.
[3] Taycan. https://www.porsche.com/usa/models/taycan/taycan-models/taycan/,

2022.
[4] bZ4X. https://www.toyota.com/electrified/, 2022.
[5] The Washington Post. Behind the wheel of a Tesla Model 3: It’s a giant iPhone —

for better and worse. https://www.washingtonpost.com/technology/2018/08/02
/behind-wheel-tesla-model-its-giant-iphone-better-worse/, 2022.

[6] Motor Trend. Tech Company Testing Remote Operators as Self-Driving Car
Backups. https://www.motortrend.com/news/mira-self-driving-car-remote-con
trol-car/„ 2022.

[7] Oussama El Marai and Tarik Taleb. Smooth and low latency video streaming for
autonomous cars during handover. Ieee Network, 34(6):302–309, 2020.

[8] Forbes. Whether Those Endless Edge Or Corner Cases Are The Long-Tail Doom
For AI Self-Driving Cars. https://www.forbes.com/sites/lanceeliot/2021/07/13/w
hether-those-endless-edge-or-corner-cases-are-the-long-tail-doom-for-ai-sel
f-driving-cars/?sh=595cfeaf5933„ 2021.

[9] Sotiris Pavlopoulos, Efthyvoulos Kyriacou, Alexandros Berler, Spiridon Dembeyi-
otis, and Dimitris Koutsouris. A novel emergency telemedicine system based on
wireless communication technology-ambulance. IEEE Transactions on information

technology in biomedicine, 2(4):261–267, 1998.
[10] Ericsson. The 5G Connected Ambulance g . https://www.ericsson.com/en/cases/

2020/the-5g-connected-ambulance„ 2023.
[11] Waveform. What causes weak cell phone signal and dropped calls? . https:

//www.waveform.com/pages/causes-of-weak-signal„ 2022.
[12] Tao Jiang, Jianhua Zhang, Pan Tang, Lei Tian, Yi Zheng, Jianwu Dou, Henrik

Asplund, Leszek Raschkowski, Raffaele D’Errico, and Tommi Jämsä. 3gpp stan-
dardized 5g channel model for iiot scenarios: A survey. IEEE Internet of Things

Journal, 8(11):8799–8815, 2021.
[13] Christoph F Mecklenbrauker, Andreas F Molisch, Johan Karedal, Fredrik Tufves-

son, Alexander Paier, Laura Bernadó, Thomas Zemen, Oliver Klemp, and Nicolai
Czink. Vehicular channel characterization and its implications for wireless system
design and performance. Proceedings of the IEEE, 99(7):1189–1212, 2011.

[14] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang, Xi Liu, Congkai An,
Yiming Shi, Liang Liu, and Huadong Ma. Understanding operational 5g: A first
measurement study on its coverage, performance and energy consumption. In
Proceedings of the Annual conference of the ACM Special Interest Group on Data

Communication on the applications, technologies, architectures, and protocols for

computer communication, pages 479–494, 2020.
[15] Moinak Ghoshal, Z Jonny Kong, Qiang Xu, Zixiao Lu, Shivang Aggarwal, Imran

Khan, Yuanjie Li, Y Charlie Hu, and Dimitrios Koutsonikolas. An in-depth study
of uplink performance of 5g mmwave networks. In Proceedings of the ACM

SIGCOMM Workshop on 5G and Beyond Network Measurements, Modeling, and

Use Cases, pages 29–35, 2022.
[16] Mega Meeting. What Internet Speed do you Need for Video Conferencing?

. https://www.megameeting.com/news/what-internet-speed-for-video-confere
ncing/„ 2021.

[17] Xianshang Lin, Yunfei Ma, Junshao Zhang, Yao Cui, Jing Li, Shi Bai, Ziyue Zhang,
Dennis Cai, Hongqiang Harry Liu, and Ming Zhang. Gso-simulcast: global stream
orchestration in simulcast video conferencing systems. In Proceedings of the ACM

SIGCOMM 2022 Conference, pages 826–839, 2022.
[18] Electrek. Here’s what Tesla’s Autopilot 2.0 can see with its 8 cameras . https:

//electrek.co/2017/05/16/tesla-autopilot-2-0-can-see/„ 2017.
[19] 5GAA. Teleoperated driving (ToD): System requirements analysis and architec-

ture. https://5gaa.org/content/uploads/2021/09/5GAA_ToD_System_Requireme
nts_Architecture_TR.pdf„ 2021.

[20] Simple guide of camera bitrate setting g . https://www.unifore.net/ip-video-sur
veillance/simple-guide-of-ip-camera-bitrate-setting.html„ 2015.

[21] Tesla. Tesla Premium Connectivity. https://www.tesla.com/en_eu/support/conn
ectivity„ 2022.

[22] ATT in-car Wifi g . https://www.att.com/plans/in-car-wifi/„ 2023.
[23] Verizon connected car . https://www.verizon.com/plans/devices/connected-cars/„

2023.
[24] Tesla LTE Connection is Unusable . https://teslamotorsclub.com/tmc/threads/te

sla-lte-connection-is-unusable.84139/„ 2023.
[25] 4G/LTE speeds in NZ - painfully slow . https://teslamotorsclub.com/tmc/thread

s/4g-lte-speeds-in-nz-painfully-slow.283812/„ 2022.
[26] Ratul Mahajan, Jitu Padhye, Sharad Agarwal, and Brian Zill. High performance

vehicular connectivity using opportunistic erasure coding. In USENIX Annual

Technical Conference, 2012.
[27] Jakob Eriksson, Hari Balakrishnan, and Samuel Madden. Cabernet: Vehicular

content delivery usingwifi. In Proceedings of the 14th ACM international conference

on Mobile computing and networking, pages 199–210, 2008.
[28] Ning Lu, Nan Cheng, Ning Zhang, Xuemin Shen, and Jon W Mark. Connected

vehicles: Solutions and challenges. IEEE internet of things journal, 1(4):289–299,
2014.

[29] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu Li, Yuanbo Zhang,
Jiuhai Zhang, Wei Shi, Wentao Chen, Ding Li, et al. Xlink: Qoe-driven multi-path
quic transport in large-scale video services. In Proceedings of the 2021 ACM

SIGCOMM 2021 Conference, pages 418–432, 2021.
[30] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,

Fabien Duchene, Olivier Bonaventure, and Mark Handley. How hard can it be?
designing and implementing a deployable multipath {TCP}. In 9th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 12), pages
399–412, 2012.

[31] HyunJong Lee, Jason Flinn, and Basavaraj Tonshal. Raven: Improving interactive
latency for the connected car. In Proceedings of the 24th Annual International

Conference on Mobile Computing and Networking, MobiCom ’18, 2018.
[32] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Médard, and Jon

Crowcroft. Xors in the air: Practical wireless network coding. In Proceedings of

the 2006 conference on Applications, technologies, architectures, and protocols for

computer communications, pages 243–254, 2006.
[33] Sachin Katti, Shyamnath Gollakota, and Dina Katabi. Embracing wireless in-

terference: Analog network coding. ACM SIGCOMM Computer Communication

Review, 37(4):397–408, 2007.
[34] François Michel, Quentin De Coninck, and Olivier Bonaventure. Quic-fec: Bring-

ing the benefits of forward erasure correction to quic. In 2019 IFIP Networking

Conference (IFIP Networking), pages 1–9. IEEE, 2019.
[35] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger, Michelle Effros, Jun Shi,

and Ben Leong. A random linear network coding approach to multicast. IEEE
Transactions on information theory, 52(10):4413–4430, 2006.

[36] Jay Kumar Sundararajan, Devavrat Shah, Muriel Médard, Szymon Jakubczak,
Michael Mitzenmacher, and Joao Barros. Network coding meets tcp: Theory and
implementation. Proceedings of the IEEE, 99(3):490–512, 2011.

[37] Michael G Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and
Daniel A Spielman. Efficient erasure correcting codes. IEEE Transactions on

Information Theory, 47(2):569–584, 2001.
[38] Sreekrishna Pandi, Frank Gabriel, Juan A Cabrera, Simon Wunderlich, Martin

Reisslein, and Frank HP Fitzek. Pace: Redundancy engineering in rlnc for low-
latency communication. IEEE Access, 5:20477–20493, 2017.

[39] Alexander E Mohr, Eve A Riskin, and Richard E Ladner. Unequal loss protection:
Graceful degradation of image quality over packet erasure channels through
forward error correction. IEEE journal on selected areas in communications,
18(6):819–828, 2000.

[40] Alan Ford, Costin Raiciu, Mark J. Handley, and Olivier Bonaventure. TCP Ex-
tensions for Multipath Operation with Multiple Addresses. RFC 6824, January
2013.

[41] Yanmei Liu, Yunfei Ma, Quentin De Coninck, Olivier Bonaventure, Christian
Huitema, and Mirja Kühlewind. Multipath Extension for QUIC. Internet-Draft
draft-ietf-quic-multipath-03, Internet Engineering Task Force, October 2022.
Work in Progress.

[42] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed and Secure
Transport. RFC 9000, May 2021.

[43] Tommy Pauly, Eric Kinnear, and David Schinazi. An Unreliable Datagram Exten-
sion to QUIC. RFC 9221, March 2022.

[44] Michele Luglio, M Yahya Sanadidi, Mario Gerla, and James Stepanek. On-board
satellite" split tcp" proxy. IEEE Journal on Selected Areas in Communications,
22(2):362–370, 2004.

[45] Statista. Size of the global autonomous vehicle market in 2021 and 2022, with a
forecast through 2030. https://www.statista.com/statistics/1224515/av-market-s
ize-worldwide-forecast/„ 2023.

[46] CNN. Self-driving cars were supposed to take over the road. What hap-
pened? https://www.cnn.com/2022/11/01/business/self-driving-industry-ctrp/in
dex.html„ 2022.

[47] Forbes. Whether Those Endless Edge Or Corner Cases Are The Long-Tail Doom
For AI Self-Driving Cars. https://www.forbes.com/sites/lanceeliot/2021/07/13/w
hether-those-endless-edge-or-corner-cases-are-the-long-tail-doom-for-ai-sel
f-driving-cars/„ 2021.

[48] Motortrend. Tech Company Testing Remote Operators as Self-Driving Car
Backups. https://www.motortrend.com/news/mira-self-driving-car-remote-con
trol-car/„ 2022.

[49] EU 5G-PPP. 5G Trials for Cooperative, Connected and Automated Mobil-
ity along European 5G Cross-Border Corridors - Challenges and Opportuni-
ties. https://5g-ppp.eu/wp-content/uploads/2020/10/5G-for-CCAM-in-Cross-B
order-Corridors_5G-PPP-White-Paper-Final2.pdf„ 2018.

[50] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. Bbr: Congestion-based congestion control: Measuring bottleneck
bandwidth and round-trip propagation time. Queue, 14(5):20–53, 2016.

[51] Nikolaos Thomos and Pascal Frossard. Toward one symbol network coding
vectors. IEEE Communications letters, 16(11):1860–1863, 2012.

[52] Jana Iyengar and Ian Swett. QUIC Loss Detection and Congestion Control. RFC
9002, May 2021.

[53] Rockchip. Rockchip RK3399 . https://www.rock-chips.com/a/en/products/RK33_
Series/2016/0419/758.html„ 2016.

https://www.tesla.com/autopilot
https://waymo.com/
https://www.porsche.com/usa/models/taycan/taycan-models/taycan/
https://www.toyota.com/electrified/
https://www.washingtonpost.com/technology/2018/08/02/behind-wheel-tesla-model-its-giant-iphone-better-worse/
https://www.washingtonpost.com/technology/2018/08/02/behind-wheel-tesla-model-its-giant-iphone-better-worse/
https://www.motortrend.com/news/mira-self-driving-car-remote-control-car/
https://www.motortrend.com/news/mira-self-driving-car-remote-control-car/
https://www.forbes.com/sites/lanceeliot/2021/07/13/whether-those-endless-edge-or-corner-cases-are-the-long-tail-doom-for-ai-self-driving-cars/?sh=595cfeaf5933
https://www.forbes.com/sites/lanceeliot/2021/07/13/whether-those-endless-edge-or-corner-cases-are-the-long-tail-doom-for-ai-self-driving-cars/?sh=595cfeaf5933
https://www.forbes.com/sites/lanceeliot/2021/07/13/whether-those-endless-edge-or-corner-cases-are-the-long-tail-doom-for-ai-self-driving-cars/?sh=595cfeaf5933
https://www.ericsson.com/en/cases/2020/the-5g-connected-ambulance
https://www.ericsson.com/en/cases/2020/the-5g-connected-ambulance
https://www.waveform.com/pages/causes-of-weak-signal
https://www.waveform.com/pages/causes-of-weak-signal
https://www.megameeting.com/news/what-internet-speed-for-video-conferencing/
https://www.megameeting.com/news/what-internet-speed-for-video-conferencing/
https://electrek.co/2017/05/16/tesla-autopilot-2-0-can-see/
https://electrek.co/2017/05/16/tesla-autopilot-2-0-can-see/
https://5gaa.org/content/uploads/2021/09/5GAA_ToD_System_Requirements_Architecture_TR.pdf
https://5gaa.org/content/uploads/2021/09/5GAA_ToD_System_Requirements_Architecture_TR.pdf
https://www.unifore.net/ip-video-surveillance/simple-guide-of-ip-camera-bitrate-setting.html
https://www.unifore.net/ip-video-surveillance/simple-guide-of-ip-camera-bitrate-setting.html
https://www.tesla.com/en_eu/support/connectivity
https://www.tesla.com/en_eu/support/connectivity
https://www.att.com/plans/in-car-wifi/
https://www.verizon.com/plans/devices/connected-cars/
https://teslamotorsclub.com/tmc/threads/tesla-lte-connection-is-unusable.84139/
https://teslamotorsclub.com/tmc/threads/tesla-lte-connection-is-unusable.84139/
https://teslamotorsclub.com/tmc/threads/4g-lte-speeds-in-nz-painfully-slow.283812/
https://teslamotorsclub.com/tmc/threads/4g-lte-speeds-in-nz-painfully-slow.283812/
https://www.statista.com/statistics/1224515/av-market-size-worldwide-forecast/
https://www.statista.com/statistics/1224515/av-market-size-worldwide-forecast/
https://www.cnn.com/2022/11/01/business/self-driving-industry-ctrp/index.html
https://www.cnn.com/2022/11/01/business/self-driving-industry-ctrp/index.html
https://www.forbes.com/sites/lanceeliot/2021/07/13/whether-those-endless-edge-or-corner-cases-are-the-long-tail-doom-for-ai-self-driving-cars/
https://www.forbes.com/sites/lanceeliot/2021/07/13/whether-those-endless-edge-or-corner-cases-are-the-long-tail-doom-for-ai-self-driving-cars/
https://www.forbes.com/sites/lanceeliot/2021/07/13/whether-those-endless-edge-or-corner-cases-are-the-long-tail-doom-for-ai-self-driving-cars/
https://www.motortrend.com/news/mira-self-driving-car-remote-control-car/
https://www.motortrend.com/news/mira-self-driving-car-remote-control-car/
https://5g-ppp.eu/wp-content/uploads/2020/10/5G-for-CCAM-in-Cross-Border-Corridors_5G-PPP-White-Paper-Final2.pdf
https://5g-ppp.eu/wp-content/uploads/2020/10/5G-for-CCAM-in-Cross-Border-Corridors_5G-PPP-White-Paper-Final2.pdf
https://www.rock-chips.com/a/en/products/RK33_Series/2016/0419/758.html
https://www.rock-chips.com/a/en/products/RK33_Series/2016/0419/758.html

[54] Quectel. Quectel RM500Q-GL Specification. https://www.quectel.com/wp-conte
nt/uploads/2021/03/Quectel_RM500Q-GL_5G_Specification_V1.3.pdf„ 2021.

[55] Quectel. Quectel EP06-E Specification. https://www.quectel.com/wp-content/u
ploads/2021/03/Quectel_EP06_Series_LTE-A_Specification_V1.8.pdf„ 2021.

[56] Arm Neon. https://www.arm.com/technologies/neon, 2023.
[57] QUIC IETF working group. https://datatracker.ietf .org/wg/quic/about/, 2020.
[58] OpenWrt. OpenWrt Project) . https://openwrt.org/„ 2023.
[59] FFmpeg. A complete, cross-platform solution to record, convert and stream audio

and video.) . http://ffmpeg.org/„ 2023.
[60] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,

James Mickens, and Hari Balakrishnan. Mahimahi: Accurate record-and-replay
for {HTTP}. In 2015 {USENIX} Annual Technical Conference ({USENIX}{ATC}
15), pages 417–429, 2015.

[61] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Card-
well, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh
Govindan. Reducing web latency: the virtue of gentle aggression. In Proceedings

of the ACM SIGCOMM 2013 conference on SIGCOMM, pages 159–170, 2013.
[62] Yeon-sup Lim, Erich M. Nahum, Don Towsley, and Richard J. Gibbens. Ecf: An

mptcp path scheduler to manage heterogeneous paths. In Proceedings of the 13th

International Conference on Emerging Networking EXperiments and Technologies,
CoNEXT ’17, 2017.

[63] Swetank Kumar Saha, Shivang Aggarwal, Rohan Pathak, Dimitrios Koutsonikolas,
and Joerg Widmer. Musher: An agile multipath-tcp scheduler for dual-band
802.11ad/ac wireless lans. In The 25th Annual International Conference on Mobile

Computing and Networking, MobiCom ’19, 2019.
[64] Hang Shi, Yong Cui, Xin Wang, Yuming Hu, Minglong Dai, Fanzhao Wang, and

Kai Zheng. STMS: Improving MPTCP throughput under heterogeneous networks.
In 2018 USENIX Annual Technical Conference (USENIX ATC 18), 2018.

[65] Daniel Lukaszewski and Geoffrey Xie. Multipath transport for virtual private
networks. In 10th {USENIX} Workshop on Cyber Security Experimentation and

Test ({CSET} 17), 2017.
[66] Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet, Thomas

Given-Wilson, Axel Legay, Olivier Pereira, and Olivier Bonaventure. Pluginizing
quic. In Proceedings of the ACM Special Interest Group on Data Communication,
SIGCOMM ’19, 2019.

[67] Yong Cui, Lian Wang, Xin Wang, Hongyi Wang, and Yining Wang. Fmtcp:
A fountain code-based multipath transmission control protocol. IEEE/ACM

Transactions on Networking, 23(2):465–478, 2014.
[68] Jiyan Wu, Chau Yuen, Bo Cheng, Ming Wang, and Junliang Chen. Streaming

high-quality mobile video with multipath tcp in heterogeneous wireless networks.
IEEE Transactions on Mobile Computing, 15(9):2345–2361, 2015.

[69] Ming Li, Andrey Lukyanenko, Sasu Tarkoma, Yong Cui, and Antti Ylä-Jääski.
Tolerating path heterogeneity in multipath tcp with bounded receive buffers.
Computer Networks, 64:1–14, 2014.

[70] DriveU. DriveU100 . https://driveu.auto/product/driveu-100„ 2022.
[71] Bonding Cell Networks Using SD WAN - Part 1 . https://www.spikefishsolutions

.com/post/bonding-cell-networks-using-sd-wan-part-1„ 2020.
[72] Peplink. MAX BR1 ESN . https://www.peplink.com/products/max-br1-esn/„

2023.
[73] OpenWRT. mwan3 (Multi WAN load balancing/failover) . https://openwrt.org/

docs/guide-user/network/wan/multiwan/mwan3„ 2023.
[74] Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowdhery, Qizheng Zhang,

Henry Hoffmann, and Junchen Jiang. Server-driven video streaming for deep
learning inference. In Proceedings of the Annual Conference of the ACM Special

Interest Group on Data Communication on the Applications, Technologies, Architec-

tures, and Protocols for Computer Communication, SIGCOMM ’20, page 557–570,
New York, NY, USA, 2020. Association for Computing Machinery.

[75] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,
Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. Oboe: Auto-
tuning video abr algorithms to network conditions. In Proceedings of the 2018

Conference of the ACM Special Interest Group on Data Communication, SIGCOMM
’18, page 44–58, New York, NY, USA, 2018. Association for Computing Machinery.

[76] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive video
streaming with pensieve. In Proceedings of the Conference of the ACM Special

Interest Group on Data Communication, pages 197–210, 2017.
[77] Tan Zhang, Aakanksha Chowdhery, Paramvir Bahl, Kyle Jamieson, and Suman

Banerjee. The design and implementation of a wireless video surveillance system.
In Proceedings of the 21st Annual International Conference on Mobile Computing

and Networking, pages 426–438, 2015.
[78] Hao Wu, Xuejin Tian, Minghao Li, Yunxin Liu, Ganesh Ananthanarayanan,

Fengyuan Xu, and Sheng Zhong. Pecam: Privacy-enhanced video streaming and
analytics via securely-reversible transformation. In Proceedings of the 27th Annual
International Conference on Mobile Computing and Networking, MobiCom ’21,
page 229–241, New York, NY, USA, 2021. Association for Computing Machinery.

[79] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming Guo, and Junchen
Jiang. Pano: Optimizing 360° video streaming with a better understanding of
quality perception. In Proceedings of the ACM Special Interest Group on Data Com-

munication, SIGCOMM ’19, page 394–407, New York, NY, USA, 2019. Association

for Computing Machinery.
[80] Devdeep Ray, Jack Kosaian, K. V. Rashmi, and Srinivasan Seshan. Vantage: Opti-

mizing video upload for time-shifted viewing of social live streams. In Proceedings
of the ACM Special Interest Group on Data Communication, SIGCOMM ’19, page
380–393, New York, NY, USA, 2019. Association for Computing Machinery.

[81] Jinyang Li, Zhenyu Li, Ri Lu, Kai Xiao, Songlin Li, Jufeng Chen, Jingyu
Yang, Chunli Zong, Aiyun Chen, Qinghua Wu, Chen Sun, Gareth Tyson, and
Hongqiang Harry Liu. Livenet: A low-latency video transport network for
large-scale live streaming. In Proceedings of the ACM SIGCOMM 2022 Confer-

ence, SIGCOMM ’22, page 812–825, New York, NY, USA, 2022. Association for
Computing Machinery.

[82] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine Sherry, Hongqiang Harry
Liu, and Mingwei Xu. Achieving consistent low latency for wireless real-time
communications with the shortest control loop. In Proceedings of the ACM

SIGCOMM 2022 Conference, SIGCOMM ’22, page 193–206, New York, NY, USA,
2022. Association for Computing Machinery.

[83] Hyunho Yeo, Hwijoon Lim, Jaehong Kim, Youngmok Jung, Juncheol Ye, and
Dongsu Han. Neuroscaler: Neural video enhancement at scale. In Proceedings of

the ACM SIGCOMM 2022 Conference, SIGCOMM ’22, page 795–811, New York,
NY, USA, 2022. Association for Computing Machinery.

[84] Johannes Blömer, Richard Karp, and Emo Welzl. The rank of sparse random
matrices over finite fields. Random Structures & Algorithms, 10(4):407–419, 1997.

[85] Colin Cooper. On the distribution of rank of a random matrix over a finite field.
Random Structures & Algorithms, 17(3-4):197–212, 2000.

[86] Raspberry Pi 4. https://www.raspberrypi.com/products/compute-module-4, 2023.
[87] OpenCV. Video input with OpenCV and similarity measurement) . https://docs

.opencv.org/4.7.0/d5/dc4/tutorial_video_input_psnr_ssim.html„ 2023.
[88] R. Netravali A. Sivaraman and K. J. Winstein. Mpshell. https://github.com/ravin

et/mahimahi/releases/tag/old, 2020.
[89] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic forecasts

achieve high throughput and low delay over cellular networks. In Presented

as part of the 10th {USENIX} Symposium on Networked Systems Design and

Implementation ({NSDI} 13), pages 459–471, 2013.
[90] Real-time communication for the web. https://webrtc.org/, 2020.
[91] QUIC implementation. https://github.com/quicwg/base-drafts/wiki/Implement

ations, 2020.

https://www.quectel.com/wp-content/uploads/2021/03/Quectel_RM500Q-GL_5G_Specification_V1.3.pdf
https://www.quectel.com/wp-content/uploads/2021/03/Quectel_RM500Q-GL_5G_Specification_V1.3.pdf
https://www.quectel.com/wp-content/uploads/2021/03/Quectel_EP06_Series_LTE-A_Specification_V1.8.pdf
https://www.quectel.com/wp-content/uploads/2021/03/Quectel_EP06_Series_LTE-A_Specification_V1.8.pdf
https://www.arm.com/technologies/neon
https://datatracker.ietf.org/wg/quic/about/
https://openwrt.org/
http://ffmpeg.org/
https://driveu.auto/product/driveu-100
https://www.spikefishsolutions.com/post/bonding-cell-networks-using-sd-wan-part-1
https://www.spikefishsolutions.com/post/bonding-cell-networks-using-sd-wan-part-1
https://www.peplink.com/products/max-br1-esn/
https://openwrt.org/docs/guide-user/network/wan/multiwan/mwan3
https://openwrt.org/docs/guide-user/network/wan/multiwan/mwan3
https://www.raspberrypi.com/products/compute-module-4
https://docs.opencv.org/4.7.0/d5/dc4/tutorial_video_input_psnr_ssim.html
https://docs.opencv.org/4.7.0/d5/dc4/tutorial_video_input_psnr_ssim.html
https://github.com/ravinet/mahimahi/releases/tag/old
https://github.com/ravinet/mahimahi/releases/tag/old
https://webrtc.org/
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations

APPENDIX

Appendices are supportingmaterial that has not been peer-reviewed.

A DETAILS ON XNC’S ENCODING

OPERATIONS

XNC always uses 𝑛 = 1 when transmitting original packets for the
first time. For the case where 𝑛 > 1, we note that given each 𝑔𝑠 (𝑖)
drawn i.i.d. from 𝐺𝐹 (28) \ {0}, our coefficient generation scheme
is equivalent to 𝑝 =

∑𝑛−1
𝑖=0 𝑎𝑖𝑝𝑘+𝑖 , with each 𝑎𝑖 drawn i.i.d. from

𝐺𝐹 (28) \ {0}. This is because∑𝑛−1
𝑖=0 𝑎𝑖𝑝𝑘+𝑖 = 𝑎0

∑𝑛−1
𝑖=0 𝑏𝑖𝑝𝑘+𝑖 , where

𝑏0 = 1, 𝑏𝑖 = 𝑎𝑖
𝑎0
,∀𝑖 > 0. Also, we have ∀𝑖 > 0, 𝑥 ∈ 𝐺𝐹 (28) \ {0},

𝑃𝑟 (𝑏𝑖 = 𝑥) = 𝑃𝑟 (𝑎𝑖 = 𝑎0𝑥)

=

𝑗=28−1∑︁
𝑗=1

𝑃𝑟 (𝑎0 = 𝑗)𝑃𝑟 (𝑎𝑖 = 𝑗𝑥)

= (28 − 1) × 1
28 − 1

× 1
28 − 1

=
1

28 − 1
which proves that 𝑏𝑖 subjects to uniform distribution on 𝐺𝐹 (28) \
{0}. Compared to its original form, XNC’s coefficient generation
scheme allows us to omit one expensive packet multiply operation
per encoded packet. This optimization is especially beneficial in
the case of XNC, where we determine encoding range boarders so
that 𝑛 is small (§4.4.2).

B CHOICE OF REDUNDANT PACKET COUNT

Here we give the proof of theorem 4.1:

Proof. We begin with the case where the 𝑛 lost original pack-
ets have continuous packet numbers and we denote them as ō =

o1, ..., o𝑛 . Suppose that during the recovery, 𝑛 + 𝑘 coded packets,
labeled as c̄ = [c1, · · · , c𝑛+𝑘], are received. From Appx. A we know:
each coded packet c𝑖 is a random linear combination of o1, · · · , o𝑛
as,

c𝑖 =
𝑛+𝑘∑︁
𝑗=1

𝑎𝑖, 𝑗o𝑗 , 𝑎𝑖, 𝑗 ∈ 𝐺𝐹 (28) \ {0}

with each 𝑎𝑖, 𝑗 , 𝑗 ∈ [1, 𝑛+𝑘] drawn i.i.d. from𝐺𝐹 (28) \{0} uniformly.
Then, if we denote A := [𝑎𝑖, 𝑗], we have:

c̄𝑇 = Aō𝑇

whereA ∈ F(𝑛+𝑘)×𝑛28 . Denote as 𝐸 𝑗 the event that the first 𝑗 columns
of A are linearly independent, then 𝑃𝑟 (𝐸1) = 1 because the first
column can’t be all 0 provided that each element is sampled in
[1, 28 − 1]. For 𝑗 > 1, we have:

𝑃𝑟 (𝐸 𝑗+1) = 𝑃𝑟 (𝐸 𝑗+1, 𝐸 𝑗) + 𝑃𝑟 (𝐸 𝑗+1, 𝐸 𝑗)

= 𝑃𝑟 (𝐸 𝑗+1 |𝐸 𝑗)𝑃𝑟 (𝐸 𝑗) + 𝑃𝑟 (𝐸 𝑗+1 |𝐸 𝑗)𝑃𝑟 (𝐸 𝑗)
𝑇1
= 𝑃𝑟 (𝐸 𝑗+1 |𝐸 𝑗)𝑃𝑟 (𝐸 𝑗)

𝑇2
=

(28 − 1)𝑛+𝑘 − (28 − 1) 𝑗

(28 − 1)𝑛+𝑘
𝑃𝑟 (𝐸 𝑗)

where 𝑇1 holds because 𝑃𝑟 (𝐸 𝑗+1 |𝐸 𝑗) = 0, which corresponds to the
fact that first 𝑗 + 1 columns are linearly independent only if the

first 𝑗 columns are linearly dependent. 𝑇2 is because under 𝐸 𝑗 , the
first 𝑗 columns span a space of dimension 𝑗 , with volume (28 − 1) 𝑗 .
Therefore, there are (28−1)𝑛+𝑘 −(28−1) 𝑗 equiprobable realizations
of column 𝑗 + 1 that are linearly independent of the first 𝑗 columns.
Then,

𝑃𝑟 (𝐸𝑛) = 𝑃𝑟 (𝐸1)
𝑛−1∏
𝑗=1

(28 − 1)𝑛+𝑘 − (28 − 1) 𝑗

(28 − 1)𝑛+𝑘

=

𝑛−1∏
𝑗=1

(
1 − 1

(28 − 1)𝑛+𝑘− 𝑗

)
=

𝑛+𝑘−1∏
𝑖=𝑘+1

(
1 − 1

(28 − 1)𝑖

)
= (1 − 1

(28 − 1)𝑘+1
) (1 − 1

(28 − 1)𝑘+2
) · · ·

(1 − 1
(28 − 1)𝑛+𝑘−1

)

𝑇3≥ 1 − 1
(28 − 1)𝑘+1

− · · · − 1
(28 − 1)𝑛+𝑘−1

𝑇4≥ 1 − 1
(28 − 1)𝑘 × (28 − 2)

= 1 − 1
255𝑘 × 254

where 𝑇4 holds by applying the sum of geometric progression, and
𝑇3 is due to a recursive application of the following inequality:

𝑎(1 − 𝑥) = 𝑎 − 𝑎𝑥 > 𝑎 − 𝑥,∀𝑥 > 0, 𝑎 < 1

For each step, set 𝑎 𝑗 = (1 −∑𝑗

𝑖=1
1

(28−1)𝑘+𝑖), 𝑥 𝑗 =
1

(28−1)𝑘+𝑗+1 :

(1 − 1
(28 − 1)𝑘+1

) (1 − 1
(28 − 1)𝑘+2

) · · · (1 − 1
(28 − 1)𝑛+𝑘−1

)

> (1 − 1
(28 − 1)𝑘+1

− 1
(28 − 1)𝑘+2

) · · · (1 − 1
(28 − 1)𝑛+𝑘−1

)

.

.

.

> 1 − 1
(28 − 1)𝑘+1

− 1
(28 − 1)𝑘+2

− · · · − 1
(28 − 1)𝑛+𝑘−1

Because XNC could perform a successful decode if and only if
all columns of the coefficient matrix A are linearly independent,
the probability that XNC performs a successful decode is 𝑃𝑟 (𝐸𝑛) ≥
1 − 1

255𝑘×254 .
□

We note that our proof of Theorem 4.1 borrows idea from pre-
vious results on rank of random matrices [84, 85]. The difference
between previous work and ours is that previous work assumes
𝑎𝑖, 𝑗 ∈ F𝑞 , while we assume 𝑎𝑖, 𝑗 ∈ F𝑞 \ {0}.

C PERFORMANCE EVALUATION PLATFORM

We used an in-house platform to analyze video streaming QoE
metrics. This platform included three parts: (i) the live-streaming
client that uploaded a reference video, (ii) the streaming receiver,
and (iii) the analysis tool.

Figure 15: An example of three consecutive frames with in-

creasing frame IDs in our reference video.

For part (i), we used ffmpeg [59], which could run on many
different OSes and devices, as the video streaming client. In road
tests, the video streaming client ran on a raspberry 4 [86] connected
to our CPE via Ethernet. As for the reference video, we first used a
camera on amoving vehicle to record the road scene (at 30fps). Then
we assigned a frame ID to each frame. Fig. 15 shows an example
of three consecutive frames marked with frame ID 1, 2, and 3,
representing the first, second, and third frame in our reference
video. The frame marks were used to identify each frame by the
analysis tool.

For part (ii), we used a modified version of ffmpeg that printed
useful information, including frame decoding timestamp and frame
status (i.e., normal, corrupt, and missing). During the experiments,
the stream receiver pulled the stream and saved it as a .mp4 file.

For part (iii), we developed a tool to analyze three QoE metrics:
FPS, stall ratio, and structural similarity index measure (SSIM) score,
from the receiver logs and recorded video files:
• FPS. We calculated the average number of decoded frames (nor-
mal frames) per second as FPS.

• Stall ratio. Stall ratio was calculated based on inter-frame delay
interval. In our evaluation, we adopted a typical value that was
used in streaming services, which was 200ms. Therefore, when
observing an inter-frame delay interval larger than 200ms, our
tool added it to the total stall time. It then calculated the stall
ratio as: 𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑎𝑙𝑙_𝑡𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑟𝑒𝑎𝑚_𝑡𝑖𝑚𝑒
.

• SSIM score. SSIM score was calculated as the structural similar-
ity index between the reference video and the recorded video.
However, these two videos might begin and end with different
frame IDs, which made it difficult to calculate the correct struc-
tural similarity index. To solve this problem, we first used optical
character recognition (OCR) to recognize the recorded video’s
beginning and ending frame IDs (with marked labels). Then, we
aligned the recorded video with the reference video. Finally, we
used OpenCV’s APIs [87] to calculate the SSIM score based on
the aligned videos.

D TRACE COLLECTION

As mentioned in §8, we use a trace-driven network emulator, mp-

shell [88], to conduct our controlled experiments. The original trace
collector in mpshell (i.e., saturatr [89]) measures a link’s capacity
by saturating it with TCP traffic. This approach could not really
saturate the fluctuating cellular links due to the reactive behavior of
congestion control algorithms. In this work, we used a UDP-based
trace collector instead. On each cellular interface, our collector sent
packets at a configurable constant rate that responded to different
capacities of 5G and LTE networks. The collector receiver recorded
each packet’s arrival timestamp and converted it to compatible
formats with mpshell.

We set the sending rate of 5G paths as 100Mbps and LTE paths as
50Mbps (uplink). We argue that this is reasonable because 100Mbps
is much larger than our testing application rate (30Mbps), and the
theoretical maximum upload rate of LTE is no larger than 50Mbps.
More than 100 traces on different road segments were collected and
used for the controlled experiment part.

E HANDLING MTU PROBLEM

In CellFusion, the tunnel header overhead, including the extra
bytes from IP header, UDP header, QUIC header, and XNC header,
is 60 bytes at maximum, and our device interface MTU is 1500
bytes. Thus, to forward a full-sized (1500-byte) user packet, Cell-
Fusion sender must split it into two packets and reassemble them
at the receiver side. To avoid this, we set the MTU of the CPE’s tun
interface to 1500 - 60 = 1440 bytes. With this setting, TCP pack-
ets would be smaller than 1408 bytes after PMTU negotiation; for
UDP packets, we recommend our users to choose a small UDP
packet size (e.g., 1300 bytes) as some popular UDP-based protocols
do [57, 90, 91]. For worst cases where oversized (>1408 bytes) pack-
ets still present, the tun interface could automatically split them
via IP fragmentation. Those fragmented packets would then be
identified as different IP packets by CellFusion, and would not
need to be further splitted/reassembled.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Teleoperated driving for autonomous vehicles
	2.2 Challenges in vehicle-to-cloud streaming via a single cellular link

	3 overview
	3.1 Core components
	3.2 CellFusion's packet flow
	3.3 Organization of the following sections

	4 XNC Design
	4.1 Logical description
	4.2 Base protocol
	4.3 Coding scheme of Q-RLNC
	4.4 QoE-aware loss detection
	4.5 Opportunistic one-shot recovery

	5 CellFusion's CPE
	5.1 Customized hardware design
	5.2 Acceleration of XNC

	6 CellFusion's Back-end service
	6.1 Cloud-native architecture
	6.2 Multi-tenant

	7 Implementation and Testing in the wild
	8 Evaluation
	8.1 End-to-end road tests
	8.2 Statistical results from deployment
	8.3 Benchmarks and ablation studies

	9 Related Work
	10 Discussions and limitations
	11 Conclusion
	Acknowledgments
	References
	A details on XNC's encoding operations
	B Choice of redundant packet count
	C Performance Evaluation Platform
	D Trace collection
	E Handling MTU problem

